The tidyverse
metapackage offers even more useful functions than the ones we have covered to date. In this tutorial, we’ll be learning some new functions that will help us tansform our data, compute new variables, and visualize things more effectively.
First, here is a summary of the data analysis functions covered in this tutorial and a quick description of when you’ll want to use them:
Use distinct()
whenever you want to see the list of unique values within a variable
Use top_n()
whenever you want to get the top X rows (based on the values from some variable)
Use mutate()
whenever you want to add a new variable (column) to the existing data frame based on an operation
Use pivot_longer()
and pivot_wider()
whenever you want to convert data from wide format to long format, and vice versa
Second, here is a summary of some helpful functions for creating data visualizations using ggplot2
:
Use the group
, color
, shape
, and size
aesthetic mappings to group information
Use fct_reorder()
to sort the labels on your axes
Use expand_limits()
to automatically extend an axis in a certain direction (e.g., to show the value at zero)
Use scale_{x,y}_continuous()
to add more tick marks to an axis
Use labs()
to provide easier-to-read labels for each axis
Use facet_wrap()
to create a grid of similar charts based on a variable
Use theme()
to move (or hide) the chart legend
We will be illustrating each function by applying them to a dataset combining the gross salaries for Town of Amherst employees in 2020 with the salaries from 2018. These data were extracted from the PDF files using Tabula, cleaned up to standardize department names, and saved to this CSV file.
I can load this dataset by using the read_csv()
function from the readr
package (part of tidyverse
), supplying the URL for the dataset as my lone argument, and specifying that I want to disable scientific notation for the rest of my working session.
options(scipen=999)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.3 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 2.0.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
salaries <- read_csv("https://dds.rodrigozamith.com/files/amherst_gross_wages_2018_2020.csv")
## Rows: 1559 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): last_name, first_name, department
## dbl (2): year, gross_wages
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Let’s review the first few rows in the dataset to see what we’re working with.
head(salaries)
year | last_name | first_name | gross_wages | department |
---|---|---|---|---|
2020 | AARONSON | JEREMY | 252.71 | Fire |
2018 | ABDEL-MAKSOUD | ALI | 9878.00 | Amherst Recreation |
2020 | ABDEL-MAKSOUD | AMMAR | 1433.96 | Amherst Recreation |
2018 | ABELLI | NICOLE | 45931.00 | Amherst Recreation |
2020 | ABELLI | NICOLE | 57203.87 | Amherst Recreation |
2020 | ABRAMSON | ANDREW | 81.96 | Town Clerk’s |
Next, let’s double-check the structure of the dataset:
glimpse(salaries)
## Rows: 1,559
## Columns: 5
## $ year <dbl> 2020, 2018, 2020, 2018, 2020, 2020, 2018, 2018, 2020, 2018...
## $ last_name <chr> "AARONSON", "ABDEL-MAKSOUD", "ABDEL-MAKSOUD", "ABELLI", "A...
## $ first_name <chr> "JEREMY", "ALI", "AMMAR", "NICOLE", "NICOLE", "ANDREW", "D...
## $ gross_wages <dbl> 252.71, 9878.00, 1433.96, 45931.00, 57203.87, 81.96, 102.0...
## $ department <chr> "Fire", "Amherst Recreation", "Amherst Recreation", "Amher...
As we can see, there are five variables in this dataset, and a total of 1,559 observations. The names are correctly stored as chr
values and the numbers (year
and gross_wages
) correctly present themselves as numerical (dbl
) values. Finally, it still seems like the data mostly exist for just two years: 2018
and 2020
. (We can easily double-check that using the distinct()
function, which is described below.)
We use the distinct()
to get a quick listing of all the unique values within a given variable.
This is helpful when a variable (like department
) has a lot of values that repeat, yet you want to quickly see which different values (different departments) are present in the dataset. For example, here’s how we can get a basic data frame consisting of just the unique values for department
:
salaries %>%
distinct(department)
department |
---|
Fire |
Amherst Recreation |
Town Clerk’s |
Jones Library |
Accounting |
Public Works |
Inspections Services |
Dispatch |
Police |
Senior Center |
Cherry Hill Golf Course |
Town Manager’s Office |
Conservation |
Collectors |
Assessor |
Planning |
Select Board |
Town Council |
Public Health |
Sustainability |
Facilities/Maintenance |
Information Technology |
Animal Control |
Parking Enforcement |
Human Resources |
Human Resources/Human Rights |
count()
effectively does this and provides us with additional information (how often that unique value comes up), so it is often more useful in the beginning. However, there will be times in more advanced analyses when you’ll want to call on a simple vector of unique values as part of a multi-step operation, and distinct()
allows you to do that in an efficient way.
We can double-check that we only have data for 2018 and 2020 by using the following code:
salaries %>%
distinct(year)
year |
---|
2020 |
2018 |
That is indeed the case. We only have data for those two years.
The top_n()
function is useful whenever we want to look at the top X rows of the dataset based on some variable. This is a faster alternative to the arrange()
and head()
pairings we’ve previously covered.
This function takes two arguments: (1) the number of rows you want and (2) the variable to base the selection on.
For example, here’s how we can produce a data frame with the three people that have the highest salaries (gross_wages
):
salaries %>%
top_n(3, gross_wages)
year | last_name | first_name | gross_wages | department |
---|---|---|---|---|
2020 | BOCKELMAN | PAUL | 193575.7 | Town Manager’s Office |
2020 | LANG | TODD | 172626.8 | Police |
2020 | LIVINGSTONE | SCOTT | 172109.8 | Police |
This may occasionally produce more than 3 rows if the third-highest value was shared by two or more people, making this a superior alternative to relying on head()
. We would still need to pair it with arrange()
to sort the output, though.
The mutate()
function is used whenever we want to add (compute) a new variable to the data frame based on an operation. (Put differently, when you want to add a new data point for each observation (row) within the data frame.)
We supply the mutate()
function with an argument structured with (1) the name of the variable we want to create (e.g., new_salary
), (2) followed by the equal sign (=
) to denote what we want that new variable to be equal to, which is followed by (3) the operation we want to perform to calculate the values for the new variable (e.g., old_salary + 10
).
This syntax is similar to what we previously covered with the summarize()
function. However, unlike summarize()
, the mutate()
function does not strip information from the dataset (i.e., it does not aggregate data). Because we’re just adding a new column, all of our original variables (like first_name
) are preserved.
Here’s how we might compute what a 2% raise would look like for each person in this dataset, storing that information in a variable called increased_wages
:
salaries %>%
mutate(increased_wages=gross_wages*1.02) %>%
select(year, first_name, last_name, gross_wages, increased_wages)
year | first_name | last_name | gross_wages | increased_wages |
---|---|---|---|---|
2020 | JEREMY | AARONSON | 252.71 | 257.7642 |
2018 | ALI | ABDEL-MAKSOUD | 9878.00 | 10075.5600 |
2020 | AMMAR | ABDEL-MAKSOUD | 1433.96 | 1462.6392 |
2018 | NICOLE | ABELLI | 45931.00 | 46849.6200 |
2020 | NICOLE | ABELLI | 57203.87 | 58347.9474 |
2020 | ANDREW | ABRAMSON | 81.96 | 83.5992 |
2018 | DIANA | ADAIR | 102.00 | 104.0400 |
2018 | EMILY | ADELSBEGER | 359.00 | 366.1800 |
2020 | PATRICIA | AHO | 180.18 | 183.7836 |
2018 | ELIZA | AHRENS | 14023.00 | 14303.4600 |
2018 | JAKE | ALDRICH | 9500.00 | 9690.0000 |
2018 | MONICA | ALDRICH | 82065.00 | 83706.3000 |
2020 | MONICA | ALDRICH | 96169.00 | 98092.3800 |
2018 | SONIA | ALDRICH | 111878.00 | 114115.5600 |
2020 | SONIA | ALDRICH | 132251.42 | 134896.4484 |
2018 | HENRY | ALLAN | 63229.00 | 64493.5800 |
2020 | HENRY | ALLAN | 69565.75 | 70957.0650 |
2018 | CAMLYN | ALLEN | 4444.00 | 4532.8800 |
2018 | LUKE | ALLEN | 501.00 | 511.0200 |
2018 | MARTA | ALVAREZ | 360.00 | 367.2000 |
2020 | MARTA | ALVAREZ | 270.27 | 275.6754 |
2018 | BRIDGET | AMBERS | 4939.00 | 5037.7800 |
2018 | AMY | ANAYA | 75243.00 | 76747.8600 |
2020 | AMY | ANAYA | 86178.46 | 87902.0292 |
2020 | CATHERINE | ANDERSON | 51923.57 | 52962.0414 |
2018 | MARIAH | ANTHONY | 13960.00 | 14239.2000 |
2020 | MARIAH | ANTHONY | 71710.39 | 73144.5978 |
2018 | EDWARD | APPEL | 336.00 | 342.7200 |
2020 | EDWARD | APPEL | 3194.73 | 3258.6246 |
2018 | JESSENIA | AQUINO | 42.00 | 42.8400 |
2018 | BRUCE | ARBOUR | 273.00 | 278.4600 |
2020 | BRUCE | ARBOUR | 99.36 | 101.3472 |
2018 | PATRICK | ARBOUR | 62101.00 | 63343.0200 |
2020 | PATRICK | ARBOUR | 76540.67 | 78071.4834 |
2018 | ANDREW | ARMSTRONG | 3581.00 | 3652.6200 |
2018 | JESUS | AROCHO | 154513.00 | 157603.2600 |
2020 | JESUS | AROCHO | 162880.27 | 166137.8754 |
2018 | SIMONE | ASCHER | 50268.00 | 51273.3600 |
2020 | SIMONE | ASCHER | 64967.68 | 66267.0336 |
2018 | CYNTHIA | ASEBROOK | 358.00 | 365.1600 |
2020 | CYNTHIA | ASEBROOK | 38.61 | 39.3822 |
2018 | CAROL | ASHBY | 325.00 | 331.5000 |
2020 | CAROL | ASHBY | 90.09 | 91.8918 |
2018 | SHERRILL | ASHTON | 212.00 | 216.2400 |
2020 | SHERRILL | ASHTON | 773.60 | 789.0720 |
2018 | THERESA | ATTERIDGE | 7213.00 | 7357.2600 |
2020 | THERESA | ATTERIDGE | 2791.47 | 2847.2994 |
2018 | CHARLES | ATWOOD | 55.00 | 56.1000 |
2020 | SIMONE | AUDETTE | 335.38 | 342.0876 |
2018 | SUSAN | AUDETTE | 66215.00 | 67539.3000 |
2020 | SUSAN | AUDETTE | 75618.29 | 77130.6558 |
2018 | JARRETT | AUSTIN | 5649.00 | 5761.9800 |
2020 | JARRETT | AUSTIN | 5684.04 | 5797.7208 |
2018 | DANIEL | AVERILL | 2141.00 | 2183.8200 |
2020 | DANIEL | AVERILL | 39383.53 | 40171.2006 |
2020 | CATHY | AXELSON-BERRY | 51.48 | 52.5096 |
2018 | CONNOR | BAGDON | 1936.00 | 1974.7200 |
2018 | NANCY | BAIR | 88.00 | 89.7600 |
2020 | NANCY | BAIR | 90.09 | 91.8918 |
2020 | BRIANNA | BAKER | 28493.87 | 29063.7474 |
2018 | JORDAN | BAKER | 368.00 | 375.3600 |
2020 | CALEB | BALLANTINE | 77.22 | 78.7644 |
2020 | DANIEL | BALLANTINE | 96.53 | 98.4606 |
2018 | SARAH | BANNISTER | 6099.00 | 6220.9800 |
2018 | STEVEN | BARANOSKI | 170.00 | 173.4000 |
2018 | BRYANNYAGARA | BARBOZA | 69.00 | 70.3800 |
2020 | BRYANNYAGARA | BARBOZA | 90.09 | 91.8918 |
2018 | ERIK | BARDWELL | 56064.00 | 57185.2800 |
2020 | ERIK | BARDWELL | 56779.94 | 57915.5388 |
2020 | MOHAMAD | BARHAM | 96.53 | 98.4606 |
2018 | BRIANNA | BARIL | 1766.00 | 1801.3200 |
2018 | MICHAEL | BARONE | 100310.00 | 102316.2000 |
2020 | MICHAEL | BARONE | 99440.02 | 101428.8204 |
2018 | LAURA | BARRY | 52301.00 | 53347.0200 |
2020 | LAURA | BARRY | 11157.14 | 11380.2828 |
2018 | ROBIN | BARTON | 64972.00 | 66271.4400 |
2020 | ROBIN | BARTON | 67613.40 | 68965.6680 |
2018 | CHRISTOPHER | BASCOMB | 101015.00 | 103035.3000 |
2020 | CHRISTOPHER | BASCOMB | 116310.16 | 118636.3632 |
2020 | GREGORY | BASCOMB | 1500.00 | 1530.0000 |
2018 | CLAIRE | BASLER-CHANG | 3182.00 | 3245.6400 |
2018 | AIDAN | BASS | 3883.00 | 3960.6600 |
2020 | JOSEPH | BASS | 64.35 | 65.6370 |
2020 | BAILEY | BATTY | 366.79 | 374.1258 |
2020 | EVELYN | BEAURY | 77.22 | 78.7644 |
2018 | PHILIP | BELANGER | 30285.00 | 30890.7000 |
2020 | PHILIP | BELANGER | 46561.70 | 47492.9340 |
2018 | BRADLEY | BELL | 1074.00 | 1095.4800 |
2018 | JOHN | BELLA-HUNTER | 2005.00 | 2045.1000 |
2018 | ANYA | BENSON | 3850.00 | 3927.0000 |
2020 | ANYA | BENSON | 7911.55 | 8069.7810 |
2020 | ELAYNE | BERGER | 151.22 | 154.2444 |
2020 | EMERY | BERGER | 151.22 | 154.2444 |
2018 | CASEY | BERGERON | 93965.00 | 95844.3000 |
2020 | CASEY | BERGERON | 88642.25 | 90415.0950 |
2018 | KIMBERLY | BERGERON | 45685.00 | 46598.7000 |
2020 | KIMBERLY | BERGERON | 54098.05 | 55180.0110 |
2018 | EVERETT | BERGMANN | 57168.00 | 58311.3600 |
2020 | EVERETT | BERGMANN | 61219.34 | 62443.7268 |
2018 | PAUL | BERMAN | 290.00 | 295.8000 |
2020 | LIZA | BERNARD | 3112.90 | 3175.1580 |
2018 | MARTHA | BERNSTEIN | 113.00 | 115.2600 |
2020 | CLARE | BERTRAND | 184.41 | 188.0982 |
2018 | MATTHEW | BERUBE | 71176.00 | 72599.5200 |
2020 | MATTHEW | BERUBE | 81355.84 | 82982.9568 |
2018 | JOHN | BERWALD | 154.00 | 157.0800 |
2020 | JOHN | BERWALD | 102.96 | 105.0192 |
2020 | HANNAH | BETE | 2156.54 | 2199.6708 |
2020 | JUDITH | BEYER | 77.22 | 78.7644 |
2020 | LOUIS | BEYER | 77.22 | 78.7644 |
2018 | BARBARA | BILZ | 88861.00 | 90638.2200 |
2020 | BARBARA | BILZ | 99137.75 | 101120.5050 |
2020 | LAWRENCE | BIRKHOLZ | 1500.00 | 1530.0000 |
2018 | CAROL | BIRTWISTLE | 306.00 | 312.1200 |
2020 | CAROL | BIRTWISTLE | 140.02 | 142.8204 |
2020 | HOLLY | BLACK | 186.62 | 190.3524 |
2018 | ARLO | BLANCHARD | 3922.00 | 4000.4400 |
2020 | JEFFREY | BLAUSTEIN | 90.09 | 91.8918 |
2020 | MARILYN | BLAUSTEIN | 90.09 | 91.8918 |
2018 | THOMAS | BLESSING | 1508.00 | 1538.1600 |
2018 | ANNA | BLOKHINA | 56.00 | 57.1200 |
2018 | FREDERICK | BLOOM | 121.00 | 123.4200 |
2020 | TAYLOR | BLOW | 645.86 | 658.7772 |
2018 | PAUL | BOCKELMAN | 171504.00 | 174934.0800 |
2020 | PAUL | BOCKELMAN | 193575.69 | 197447.2038 |
2020 | PARIS | BOICE | 10651.58 | 10864.6116 |
2020 | JANDALL | BOOM | 252.00 | 257.0400 |
2018 | BRADLEY | BORDEWIECK | 61890.00 | 63127.8000 |
2020 | BRADLEY | BORDEWIECK | 68109.50 | 69471.6900 |
2020 | MICHELLE | BORKHUIS | 2705.40 | 2759.5080 |
2020 | TYLER | BORRELL | 3695.89 | 3769.8078 |
2018 | WILLIAM | BORRELL | 3379.00 | 3446.5800 |
2020 | ZITA | BOSCHER | 1498.25 | 1528.2150 |
2018 | CHERYL | BOUCHER | 79015.00 | 80595.3000 |
2020 | CHERYL | BOUCHER | 95341.52 | 97248.3504 |
2018 | JONATHAN | BOULANGER | 1047.00 | 1067.9400 |
2018 | THERESA | BOUTHILETTE SARNA | 59309.00 | 60495.1800 |
2020 | THERESA | BOUTHILETTE SARNA | 65259.85 | 66565.0470 |
2018 | HOLLY | BOWSER | 73770.00 | 75245.4000 |
2020 | HOLLY | BOWSER | 86727.38 | 88461.9276 |
2018 | JEFFREY | BOWSER | 54540.00 | 55630.8000 |
2020 | JEFFREY | BOWSER | 57361.02 | 58508.2404 |
2018 | ROXANNE | BOYD | 38058.00 | 38819.1600 |
2020 | ROXANNE | BOYD | 47143.78 | 48086.6556 |
2018 | CATHY | BOYLE | 56312.00 | 57438.2400 |
2018 | MICHAEL | BOYLE | 112742.00 | 114996.8400 |
2018 | PAUL | BRACCIOTTI | 206.00 | 210.1200 |
2020 | PAUL | BRACCIOTTI | 115.83 | 118.1466 |
2018 | ANDREW | BRACE | 47796.00 | 48751.9200 |
2020 | ANDREW | BRACE | 67308.07 | 68654.2314 |
2018 | BETTY | BRACE | 236.00 | 240.7200 |
2020 | TYLER | BRADLEY | 90.09 | 91.8918 |
2018 | PHILIP | BRAININ | 2103.00 | 2145.0600 |
2020 | PHILIP | BRAININ | 2622.24 | 2674.6848 |
2018 | SAMUEL | BRAININ | 1845.00 | 1881.9000 |
2020 | AARON | BRAITHWAITE | 577.16 | 588.7032 |
2020 | BENJAMIN | BREGER | 39474.01 | 40263.4902 |
2018 | CHRISTINE | BRESTRUP | 88369.00 | 90136.3800 |
2020 | CHRISTINE | BRESTRUP | 100296.78 | 102302.7156 |
2020 | JILLIAN | BREVIK | 90.09 | 91.8918 |
2018 | ALISA | BREWER | 1500.00 | 1530.0000 |
2020 | ALISA | BREWER | 5000.04 | 5100.0408 |
2018 | NINA | BRIAN-SMITH | 429.00 | 437.5800 |
2018 | SHANE | BRITT | 4408.00 | 4496.1600 |
2020 | ROBERT | BROOKS | 99.74 | 101.7348 |
2018 | CARLTON | BROSE | 110.00 | 112.2000 |
2018 | CATHERINE | BROWN | 1517.00 | 1547.3400 |
2020 | CATHERINE | BROWN | 9760.61 | 9955.8222 |
2018 | JENNIFER | BROWN | 33763.00 | 34438.2600 |
2020 | JENNIFER | BROWN | 74139.55 | 75622.3410 |
2018 | EVA | BROWNE | 22.00 | 22.4400 |
2018 | JOHN | BRYAN | 99.00 | 100.9800 |
2020 | JOHN | BRYAN | 318.54 | 324.9108 |
2020 | KELLEY | BRYANT | 96.53 | 98.4606 |
2020 | ABIGAIL | BUCEY | 1269.20 | 1294.5840 |
2018 | JANE | BUCHANAN | 7415.00 | 7563.3000 |
2018 | WILLIAM | BUDINGTON | 265.00 | 270.3000 |
2018 | MATTHEW | BUKOWSKI | 651.00 | 664.0200 |
2020 | ZACHARY | BULLOUGH | 77077.13 | 78618.6726 |
2018 | NONNY | BURACK | 626.00 | 638.5200 |
2020 | NONNY | BURACK | 1500.00 | 1530.0000 |
2020 | NONNY | BURACK | 106.08 | 108.2016 |
2018 | DAVID | BURGESS | 100413.00 | 102421.2600 |
2020 | DAVID | BURGESS | 19372.75 | 19760.2050 |
2018 | NATHANAEL | BURGESS | 77727.00 | 79281.5400 |
2020 | NATHANAEL | BURGESS | 89309.83 | 91096.0266 |
2018 | SANDRA | BURGESS | 57063.00 | 58204.2600 |
2018 | CONOR | BURKE | 70517.00 | 71927.3400 |
2020 | CONOR | BURKE | 64035.47 | 65316.1794 |
2020 | TRISTAN | BURKE | 2081.57 | 2123.2014 |
2018 | GEOFFREY | BURNHAM | 1087.00 | 1108.7400 |
2018 | GLENN | BURROWS | 73329.00 | 74795.5800 |
2020 | GLENN | BURROWS | 78790.40 | 80366.2080 |
2018 | ROSALIE | BURROWS | 206.00 | 210.1200 |
2018 | MIA | CABANA | 60245.00 | 61449.9000 |
2020 | MIA | CABANA | 69143.07 | 70525.9314 |
2018 | IRENA | CADE | 77.00 | 78.5400 |
2018 | CARL | CAIVANO | 110.00 | 112.2000 |
2020 | CARL | CAIVANO | 99.45 | 101.4390 |
2018 | JONATHAN | CALI | 539.00 | 549.7800 |
2020 | JONATHAN | CALI | 1047.54 | 1068.4908 |
2018 | STEPHEN | CALL | 84197.00 | 85880.9400 |
2020 | STEPHEN | CALL | 93817.18 | 95693.5236 |
2018 | BRENDAN | CAMPBELL | 5069.00 | 5170.3800 |
2020 | TREVOR | CAMPBELL | 179.69 | 183.2838 |
2020 | EVAN | CANNEY | 1096.46 | 1118.3892 |
2018 | ALEXANDER | CANTOR | 792.00 | 807.8400 |
2018 | ELISABETH | CANTOR | 134.00 | 136.6800 |
2020 | ELISABETH | CANTOR | 163.92 | 167.1984 |
2020 | KRISTA | CARAWAY | 4427.15 | 4515.6930 |
2018 | ROBERT | CARKHUFF | 2198.00 | 2241.9600 |
2020 | ROBERT | CARKHUFF | 431.20 | 439.8240 |
2018 | PETER | CARLSON | 65118.00 | 66420.3600 |
2020 | PETER | CARLSON | 70757.45 | 72172.5990 |
2018 | BENTON | CARR | 84181.00 | 85864.6200 |
2020 | BENTON | CARR | 90851.04 | 92668.0608 |
2018 | LINDSAY | CARROLL | 86443.00 | 88171.8600 |
2020 | LINDSAY | CARROLL | 108957.81 | 111136.9662 |
2018 | CYNTHIA | CARY | 60900.00 | 62118.0000 |
2020 | CYNTHIA | CARY | 66981.81 | 68321.4462 |
2018 | CAMERON | CASS | 2998.00 | 3057.9600 |
2018 | KAREN | CASSIDY | 3497.00 | 3566.9400 |
2020 | KAREN | CASSIDY | 7490.62 | 7640.4324 |
2018 | LAURA | CASTANO-LONGEY | 2160.00 | 2203.2000 |
2020 | LAURA | CASTANO-LONGEY | 2711.56 | 2765.7912 |
2018 | RICHARD | CAVALIERE | 715.00 | 729.3000 |
2020 | NALEYAH | CESAR-BONE | 305.28 | 311.3856 |
2018 | NICHOLAS | CHANDLER | 98870.00 | 100847.4000 |
2020 | NICHOLAS | CHANDLER | 101155.31 | 103178.4162 |
2018 | STEVEN | CHANDLER | 105409.00 | 107517.1800 |
2020 | STEVEN | CHANDLER | 120449.80 | 122858.7960 |
2018 | MARK | CHAPLIN | 7464.00 | 7613.2800 |
2018 | DAEL | CHAPMAN | 298.00 | 303.9600 |
2020 | DAEL | CHAPMAN | 51.48 | 52.5096 |
2018 | NICHOLAS | CHEHADE | 3828.00 | 3904.5600 |
2018 | KATHLEEN | CHILDRESS | 286.00 | 291.7200 |
2020 | KATHLEEN | CHILDRESS | 2515.79 | 2566.1058 |
2020 | MATTHEW | CHIPMAN | 62794.99 | 64050.8898 |
2018 | NICHOLAS | CHIREKOS | 73913.00 | 75391.2600 |
2020 | NICHOLAS | CHIREKOS | 89685.51 | 91479.2202 |
2018 | MICHELE | CHMURA | 52611.00 | 53663.2200 |
2020 | MICHELE | CHMURA | 52073.37 | 53114.8374 |
2018 | CARRISSA | CHO | 1254.00 | 1279.0800 |
2018 | NUR | CHOWDHURI | 187.00 | 190.7400 |
2018 | ELIZABETH | CHUDZIK | 81034.00 | 82654.6800 |
2020 | ELIZABETH | CHUDZIK | 89333.01 | 91119.6702 |
2018 | JOHN | CHUDZIK | 118776.00 | 121151.5200 |
2020 | JOHN | CHUDZIK | 96244.37 | 98169.2574 |
2018 | STEPHANIE | CICCARELLO | 73665.00 | 75138.3000 |
2020 | STEPHANIE | CICCARELLO | 79794.58 | 81390.4716 |
2018 | JOSHUA | CICIA | 66591.00 | 67922.8200 |
2020 | JOSHUA | CICIA | 72933.04 | 74391.7008 |
2020 | RICHARD | CILIBERTO | 752.95 | 768.0090 |
2018 | DANTE | CITINO | 1785.00 | 1820.7000 |
2020 | DANTE | CITINO | 2034.03 | 2074.7106 |
2020 | TOMMY | CLAIRE | 385.00 | 392.7000 |
2018 | CHARLES | CLARK | 13451.00 | 13720.0200 |
2020 | CHARLES | CLARK | 47688.35 | 48642.1170 |
2018 | JOSHUA | CLARK | 62248.00 | 63492.9600 |
2020 | JOSHUA | CLARK | 64638.95 | 65931.7290 |
2018 | THOMAS | CLARK | 92196.00 | 94039.9200 |
2020 | THOMAS | CLARK | 103902.69 | 105980.7438 |
2018 | VINCENT | CLEARY | 50.00 | 51.0000 |
2018 | BRUCE | CLEVELAND | 35734.00 | 36448.6800 |
2020 | BRUCE | CLEVELAND | 47053.12 | 47994.1824 |
2018 | DAVID | CLOONEY | 79310.00 | 80896.2000 |
2020 | DAVID | CLOONEY | 87115.98 | 88858.2996 |
2020 | ANTHONY | CLOUGH | 1104.42 | 1126.5084 |
2018 | TRAVIS | CLOUGH | 2239.00 | 2283.7800 |
2018 | DAVID | CODY | 62036.00 | 63276.7200 |
2020 | DAVID | CODY | 76825.63 | 78362.1426 |
2018 | JONATHAN | CODY | 610.00 | 622.2000 |
2018 | JOHN | COELHO | 63777.00 | 65052.5400 |
2020 | JOHN | COELHO | 69090.52 | 70472.3304 |
2020 | JOSEPH | COFFEY | 139.58 | 142.3716 |
2018 | JOSHUA | COLBY | 55996.00 | 57115.9200 |
2020 | JOSHUA | COLBY | 50346.75 | 51353.6850 |
2020 | PAUL | COLLINS | 96.53 | 98.4606 |
2018 | XAVIER | COLON | 2116.00 | 2158.3200 |
2018 | ELISE | COMMONS | 789.00 | 804.7800 |
2018 | COLIN | CONKEY | 2659.00 | 2712.1800 |
2020 | EMMA | CONNER | 102.96 | 105.0192 |
2020 | DARBY | CONNOLLY | 1032.41 | 1053.0582 |
2018 | LOUIS | CONOVER | 44.00 | 44.8800 |
2020 | LOUIS | CONOVER | 241.32 | 246.1464 |
2018 | RITA | CONTARDO | 89196.00 | 90979.9200 |
2018 | CLARE | COOKE | 44414.00 | 45302.2800 |
2020 | CLARE | COOKE | 54037.85 | 55118.6070 |
2018 | RUSSELL | COOMBS | 73899.00 | 75376.9800 |
2020 | RUSSELL | COOMBS | 77628.58 | 79181.1516 |
2018 | SCOTT | COOMBS | 47767.00 | 48722.3400 |
2018 | JASMINE | COOPER | 159.00 | 162.1800 |
2018 | JULIA | COPPONI | 371.00 | 378.4200 |
2018 | ADAM | CORMIER | 73960.00 | 75439.2000 |
2020 | ADAM | CORMIER | 78005.04 | 79565.1408 |
2018 | DEBRA | CORMIER | 60711.00 | 61925.2200 |
2020 | DEBRA | CORMIER | 47405.84 | 48353.9568 |
2018 | DOMINICK | CORSETTI | 102278.00 | 104323.5600 |
2020 | DOMINICK | CORSETTI | 100174.43 | 102177.9186 |
2018 | ANDREW | COTE | 42650.00 | 43503.0000 |
2020 | ANDREW | COTE | 66271.04 | 67596.4608 |
2020 | CASSANDRA | COTE | 1905.57 | 1943.6814 |
2018 | LIVIA | COX | 3186.00 | 3249.7200 |
2018 | JESSE | CRAFTS-FINCH | 39.00 | 39.7800 |
2020 | JESSE | CRAFTS-FINCH | 99.49 | 101.4798 |
2020 | SARAH | CRAIG | 288.99 | 294.7698 |
2018 | CHRIS | CRANE | 12644.00 | 12896.8800 |
2020 | CHRIS | CRANE | 13436.82 | 13705.5564 |
2018 | JASON | CRANE | 759.00 | 774.1800 |
2018 | CAROLINE | CRISTOFORO | 6073.00 | 6194.4600 |
2018 | JOHN | CROWLEY | 56144.00 | 57266.8800 |
2020 | JOHN | CROWLEY | 60731.31 | 61945.9362 |
2018 | LUCAS | CROWLEY | 390.00 | 397.8000 |
2018 | ROBERT | CROWNER | 605.00 | 617.1000 |
2020 | ROBERT | CROWNER | 614.71 | 627.0042 |
2020 | PETER | CRUMP | 1513.28 | 1543.5456 |
2018 | MATTHEW | CRUTCH | 39255.00 | 40040.1000 |
2020 | MATTHEW | CRUTCH | 43420.87 | 44289.2874 |
2018 | JAIME | CRUZ | 77.00 | 78.5400 |
2018 | JOCELYN | CUFFEE | 105.00 | 107.1000 |
2018 | NICHOLAS | CUNHA | 449.00 | 457.9800 |
2020 | RITA | CURLEY | 90198.23 | 92002.1946 |
2018 | MICHAEL | CURTIN | 79051.00 | 80632.0200 |
2020 | MICHAEL | CURTIN | 84646.21 | 86339.1342 |
2020 | WILLIAM | CUTRONE | 1325.43 | 1351.9386 |
2018 | ADAM | D’AGOSTINO | 61.00 | 62.2200 |
2018 | THOMAS | D’ANNOLFO | 572.00 | 583.4400 |
2018 | THOMAS | DALEY | 4246.00 | 4330.9200 |
2018 | KELLY | DALTON | 2242.00 | 2286.8400 |
2018 | BRIAN | DALY | 119463.00 | 121852.2600 |
2020 | BRIAN | DALY | 131630.02 | 134262.6204 |
2018 | JESSICA | DAMON | 91474.00 | 93303.4800 |
2020 | JESSICA | DAMON | 91391.38 | 93219.2076 |
2018 | JAMES | DAMOURAS | 106752.00 | 108887.0400 |
2020 | JAMES | DAMOURAS | 117500.49 | 119850.4998 |
2018 | NICHOLAS | DAMREN | 39953.00 | 40752.0600 |
2020 | ANGELA | DANGER | 60449.19 | 61658.1738 |
2020 | KELLY | DAPPRICH | 180.18 | 183.7836 |
2020 | SAMUEL | DATTILO | 1296.67 | 1322.6034 |
2020 | MATTHEW | DAVIES | 44558.12 | 45449.2824 |
2020 | SHYLA | DAVIS | 262.85 | 268.1070 |
2020 | PATRICIA | DE ANGELIS | 5000.04 | 5100.0408 |
2018 | MARY | DECKER | 50368.00 | 51375.3600 |
2020 | MARY | DECKER | 57737.47 | 58892.2194 |
2020 | DOUGLAS | DEDISCHEW | 335.38 | 342.0876 |
2018 | SCOTT | DEL POZZO | 22512.00 | 22962.2400 |
2018 | ANTHONY | DELANEY | 56762.00 | 57897.2400 |
2020 | ANTHONY | DELANEY | 65251.53 | 66556.5606 |
2018 | ROBERT | DELGADO | 5155.00 | 5258.1000 |
2020 | SARAH | DEMAREST | 8251.03 | 8416.0506 |
2020 | PETER | DEMLING | 1500.00 | 1530.0000 |
2018 | COREY | DERES | 37681.00 | 38434.6200 |
2020 | COREY | DERES | 42898.93 | 43756.9086 |
2020 | MICHELE | DESABRAIS | 7487.34 | 7637.0868 |
2020 | JACK | DESAUTELS | 3879.78 | 3957.3756 |
2018 | PATRICE | DESMARAIS | 33606.00 | 34278.1200 |
2018 | PAUL | DETHIER | 85615.00 | 87327.3000 |
2020 | PAUL | DETHIER | 92711.90 | 94566.1380 |
2020 | CHRISTOPHER | DIAZ | 199.49 | 203.4798 |
2018 | JOSE | DIAZ-GUTIERREZ | 87622.00 | 89374.4400 |
2020 | JOSE | DIAZ-GUTIERREZ | 90287.16 | 92092.9032 |
2018 | SUSAN | DIERKS | 121.00 | 123.4200 |
2018 | LAUREL | DIMASI | 12302.00 | 12548.0400 |
2018 | DAVID | DION | 87957.00 | 89716.1400 |
2020 | DAVID | DION | 89516.50 | 91306.8300 |
2018 | AARON | DIPILLA | 5770.00 | 5885.4000 |
2018 | DEVIN | DIXON | 3587.00 | 3658.7400 |
2020 | WAVERLY | DOHERTY | 1351.50 | 1378.5300 |
2020 | MARY | DOHRMANN | 90.09 | 91.8918 |
2020 | THERESA | DONOHUE | 1500.00 | 1530.0000 |
2020 | SULLIVAN | DOUGLAS | 292.89 | 298.7478 |
2018 | RICHARD | DOWNIE | 2166.00 | 2209.3200 |
2020 | RICHARD | DOWNIE | 3820.44 | 3896.8488 |
2018 | JANICE | DOYAMA | 14181.00 | 14464.6200 |
2020 | JANICE | DOYAMA | 14975.12 | 15274.6224 |
2018 | MARLENE | DOYLE | 44.00 | 44.8800 |
2020 | MARLENE | DOYLE | 228.72 | 233.2944 |
2020 | MICHAEL | DOYLE | 1430.14 | 1458.7428 |
2020 | EMMA | DRAGON | 14732.46 | 15027.1092 |
2018 | VANGJEL | DRAGOTI | 542.00 | 552.8400 |
2018 | BRADLEY | DRISCOLL | 595.00 | 606.9000 |
2018 | ELAINE | DUDKIEWICZ | 129.00 | 131.5800 |
2018 | RICHARD | DUDKIEWICZ | 58871.00 | 60048.4200 |
2020 | RICHARD | DUDKIEWICZ | 54190.57 | 55274.3814 |
2020 | ELIZABETH | DUFFY | 87894.23 | 89652.1146 |
2020 | DARCY | DUMONT | 5000.04 | 5100.0408 |
2018 | WILLIAM | DUNN | 86495.00 | 88224.9000 |
2018 | RYAN | DWYER | 3422.00 | 3490.4400 |
2018 | NANCY | EDDY | 204.00 | 208.0800 |
2020 | KATHERINE | EDELL | 240.32 | 245.1264 |
2018 | LEE | EDWARDS | 259.00 | 264.1800 |
2018 | ERIC | EINHORN | 88.00 | 89.7600 |
2018 | LEE | ELDER | 30176.00 | 30779.5200 |
2018 | ZAIM | ELKALAI | 2663.00 | 2716.2600 |
2020 | KYLE | ELLIOTT | 1393.13 | 1420.9926 |
2018 | NATALIE | ELLIOTT | 1911.00 | 1949.2200 |
2018 | ERIC | ENGELSON | 138.00 | 140.7600 |
2020 | ERIC | ENGELSON | 90.09 | 91.8918 |
2018 | JANET | ENGELSON | 138.00 | 140.7600 |
2020 | JANET | ENGELSON | 90.09 | 91.8918 |
2020 | MEREDITH | ENRIGHT | 186.62 | 190.3524 |
2020 | SOPHIA | EPSTEIN | 102.96 | 105.0192 |
2018 | KAREN | ERMAN | 36326.00 | 37052.5200 |
2018 | JORDAN | ESIASON | 1742.00 | 1776.8400 |
2018 | JUSTIN | ESIASON | 3212.00 | 3276.2400 |
2018 | SARAH | ETKIN | 10079.00 | 10280.5800 |
2020 | TIMOTHY | EVE-COWLES | 3449.44 | 3518.4288 |
2018 | STEPHANIE | EVERETT | 58436.00 | 59604.7200 |
2020 | STEPHANIE | EVERETT | 71450.58 | 72879.5916 |
2018 | THOMAS | FAIR | 2533.00 | 2583.6600 |
2020 | THOMAS | FAIR | 13093.60 | 13355.4720 |
2018 | MOLLY | FALSETTI-YU | 226.00 | 230.5200 |
2020 | MOLLY | FALSETTI-YU | 135.92 | 138.6384 |
2018 | MOLLY | FARBER | 73515.00 | 74985.3000 |
2020 | MOLLY | FARBER | 80048.69 | 81649.6638 |
2018 | ANABELLE | FARNHAM | 3251.00 | 3316.0200 |
2020 | ANABELLE | FARNHAM | 7273.89 | 7419.3678 |
2020 | ANABELLE | FARNHAM | 90.09 | 91.8918 |
2020 | JULIA | FARNHAM | 2393.86 | 2441.7372 |
2020 | HUMERA | FASIHUDDIN | 158.39 | 161.5578 |
2018 | NOAH | FAY | 4609.00 | 4701.1800 |
2018 | JULIE | FEDERMAN | 78023.00 | 79583.4600 |
2020 | JULIE | FEDERMAN | 75330.05 | 76836.6510 |
2020 | SERGE | FEDOROVSKY | 66184.28 | 67507.9656 |
2018 | RICHARD | FEIN | 143.00 | 145.8600 |
2018 | FELIPE | FELICIANO | 106036.00 | 108156.7200 |
2020 | FELIPE | FELICIANO | 106668.70 | 108802.0740 |
2018 | YVONNE | FELICIANO | 92211.00 | 94055.2200 |
2020 | YVONNE | FELICIANO | 92213.81 | 94058.0862 |
2018 | ADAM | FELTMAN | 59706.00 | 60900.1200 |
2020 | ADAM | FELTMAN | 68918.27 | 70296.6354 |
2018 | STEPHEN | FELTOVIC | 54514.00 | 55604.2800 |
2020 | STEPHEN | FELTOVIC | 57639.52 | 58792.3104 |
2020 | DAMARIS | FERNANDEZ-SIERRA | 725.42 | 739.9284 |
2018 | EDWARD | FERRY | 231.00 | 235.6200 |
2018 | PAMELA | FIELD-SADLER | 59281.00 | 60466.6200 |
2020 | PAMELA | FIELD-SADLER | 63812.14 | 65088.3828 |
2018 | JANE | FINDLAY | 143.00 | 145.8600 |
2020 | JANE | FINDLAY | 141.57 | 144.4014 |
2018 | LEAH | FINN-ERB | 740.00 | 754.8000 |
2020 | JERRY | FISCHER | 96.53 | 98.4606 |
2018 | ELIZA | FITZGERALD | 607.00 | 619.1400 |
2018 | ROBERT | FLAHERTY | 73690.00 | 75163.8000 |
2020 | ROBERT | FLAHERTY | 21940.59 | 22379.4018 |
2018 | RICHARD | FLEURENT | 11173.00 | 11396.4600 |
2020 | RICHARD | FLEURENT | 15799.26 | 16115.2452 |
2018 | THERESA | FLEURENT | 71398.00 | 72825.9600 |
2020 | THERESA | FLEURENT | 77242.63 | 78787.4826 |
2018 | GARY | FLYNN | 80230.00 | 81834.6000 |
2020 | GARY | FLYNN | 84535.45 | 86226.1590 |
2018 | BRIAN | FOLEY | 55.00 | 56.1000 |
2018 | BRYAN | FORBES | 43118.00 | 43980.3600 |
2020 | BRYAN | FORBES | 51460.28 | 52489.4856 |
2018 | MICHAEL | FORCUM | 41871.00 | 42708.4200 |
2018 | BARBARA | FORD | 279.00 | 284.5800 |
2020 | BARBARA | FORD | 170.75 | 174.1650 |
2020 | DIANA | FORDHAM | 3842.75 | 3919.6050 |
2020 | SARAH | FORSAITH | 21801.24 | 22237.2648 |
2018 | DAVID | FOSTER | 109314.00 | 111500.2800 |
2018 | JON | FOSTER | 42305.00 | 43151.1000 |
2020 | JON | FOSTER | 53724.51 | 54799.0002 |
2018 | GEORGE | FOURNIER | 7103.00 | 7245.0600 |
2018 | LISA | FOX | 759.00 | 774.1800 |
2020 | AVA | FRADKIN | 112.61 | 114.8622 |
2020 | KATHARINE | FRETWELL | 186.62 | 190.3524 |
2020 | LENORE | FRIEDLANDER | 102.96 | 105.0192 |
2020 | ELAINE | FRONHOFER | 90.09 | 91.8918 |
2018 | SEAN | FROST | 60710.00 | 61924.2000 |
2020 | SEAN | FROST | 69361.16 | 70748.3832 |
2018 | MATTHEW | FRYDRYK | 101893.00 | 103930.8600 |
2020 | MATTHEW | FRYDRYK | 101439.60 | 103468.3920 |
2018 | AMANDA | FULLER | 7244.00 | 7388.8800 |
2018 | TANYA | FULLER | 286.00 | 291.7200 |
2020 | TANYA | FULLER | 194.87 | 198.7674 |
2018 | MARYJEAN | FURNIA | 29490.00 | 30079.8000 |
2018 | VICTORIA | GADDY | 3100.00 | 3162.0000 |
2020 | VICTORIA | GADDY | 2625.00 | 2677.5000 |
2020 | CHARLES | GAGNON | 1079.15 | 1100.7330 |
2018 | SCOTT | GALLAGHER | 120763.00 | 123178.2600 |
2020 | SCOTT | GALLAGHER | 142611.97 | 145464.2094 |
2020 | RYANN | GALLANT | 163.92 | 167.1984 |
2018 | RICHARD | GALLO | 80.00 | 81.6000 |
2018 | DAVID | GANCORZ | 42775.00 | 43630.5000 |
2020 | DAVID | GANCORZ | 49204.74 | 50188.8348 |
2018 | RAJU | GANGHI | 869.00 | 886.3800 |
2018 | JENNIFER | GANNETT | 63522.00 | 64792.4400 |
2018 | SAMUEL | GARDNER | 6100.00 | 6222.0000 |
2018 | ANNA | GARVIN | 9677.00 | 9870.5400 |
2018 | AMY | GATES | 110.00 | 112.2000 |
2018 | STEPHEN | GAUGHAN | 122692.00 | 125145.8400 |
2020 | STEPHEN | GAUGHAN | 157942.33 | 161101.1766 |
2020 | ANA | GAUTHIER | 207.90 | 212.0580 |
2018 | CHERYL | GAUTHIER | 41589.00 | 42420.7800 |
2020 | CHERYL | GAUTHIER | 44941.75 | 45840.5850 |
2018 | SCOTT | GAVRON | 43159.00 | 44022.1800 |
2020 | SCOTT | GAVRON | 36448.82 | 37177.7964 |
2018 | DOUGLAS | GEARY | 91860.00 | 93697.2000 |
2020 | DOUGLAS | GEARY | 83344.78 | 85011.6756 |
2020 | HENRY | GEFFERT | 2625.26 | 2677.7652 |
2020 | CALEIGH | GEOGHEGAN | 1398.08 | 1426.0416 |
2020 | DAN | GEORGAKAS | 1500.00 | 1530.0000 |
2018 | CHERYL | GEORGE | 1366.00 | 1393.3200 |
2018 | CYNTHIA | GEORGE | 236.00 | 240.7200 |
2018 | DONALD | GEORGE | 209.00 | 213.1800 |
2018 | JOHN | GEORGE | 5088.00 | 5189.7600 |
2018 | STEPHEN | GEORGE | 474.00 | 483.4800 |
2020 | STEPHEN | GEORGE | 318.24 | 324.6048 |
2018 | JOSH | GERBER DOLAN | 2693.00 | 2746.8600 |
2018 | JULIE | GERSTMAN | 121.00 | 123.4200 |
2020 | GENNADI | GERSTNER | 1727.31 | 1761.8562 |
2020 | DANIEL | GESSEN | 764.96 | 780.2592 |
2018 | GEORGE | GILLISPIE | 80091.00 | 81692.8200 |
2020 | GEORGE | GILLISPIE | 89015.81 | 90796.1262 |
2020 | JULIEN | GINSBERG PELTZ | 90.09 | 91.8918 |
2018 | ADELE | GLADSTONE-GILBERT | 107.00 | 109.1400 |
2020 | ADELE | GLADSTONE-GILBERT | 67.57 | 68.9214 |
2018 | PETE | GLAZIER | 12805.00 | 13061.1000 |
2018 | LAUREL | GLOCHESKI | 179.00 | 182.5800 |
2020 | LAUREL | GLOCHESKI | 93.31 | 95.1762 |
2018 | WILLIAM | GLOVER | 88565.00 | 90336.3000 |
2020 | WILLIAM | GLOVER | 97965.35 | 99924.6570 |
2018 | JOAN | GOLOWICH | 55.00 | 56.1000 |
2018 | LUIS | GOMBA | 6845.00 | 6981.9000 |
2020 | LUIS | GOMBA | 612.70 | 624.9540 |
2018 | CEDRIC | GONNET | 11737.00 | 11971.7400 |
2020 | CEDRIC | GONNETT | 1017.80 | 1038.1560 |
2018 | CHRISTOPHER | GOODHIND | 92683.00 | 94536.6600 |
2020 | CHRISTOPHER | GOODHIND | 104338.97 | 106425.7494 |
2018 | SUSAN | GOODHIND | 59090.00 | 60271.8000 |
2020 | SUSAN | GOODHIND | 65028.41 | 66328.9782 |
2020 | FRAN | GOODWIN | 106.18 | 108.3036 |
2020 | STEPHANIE | GOODWIN | 910.32 | 928.5264 |
2018 | DEBORAH | GORDON | 56847.00 | 57983.9400 |
2020 | DEBORAH | GORDON | 63556.92 | 64828.0584 |
2018 | BETH | GOREN | 363.00 | 370.2600 |
2020 | BETH | GOREN | 90.09 | 91.8918 |
2020 | ETHAN | GORMAN | 28986.40 | 29566.1280 |
2018 | PATRICK | GORMELY | 66823.00 | 68159.4600 |
2020 | PATRICK | GORMELY | 69465.64 | 70854.9528 |
2020 | HELEN | GRABEL | 61.13 | 62.3526 |
2018 | BENJAMIN | GRAHAM | 89252.00 | 91037.0400 |
2020 | BENJAMIN | GRAHAM | 104363.74 | 106451.0148 |
2018 | ANDREW | GRAMIGNA | 165.00 | 168.3000 |
2018 | JASON | GRANT | 45477.00 | 46386.5400 |
2020 | JASON | GRANT | 48051.43 | 49012.4586 |
2020 | REILLY | GRANT | 199.49 | 203.4798 |
2018 | TERRI-LYN | GRANT | 3795.00 | 3870.9000 |
2018 | AUDREY | GRAY | 2992.00 | 3051.8400 |
2018 | NIAMH | GRAY-MULLEN | 504.00 | 514.0800 |
2020 | NIAMH | GRAY-MULLEN | 2170.94 | 2214.3588 |
2020 | JULIE | GRDEN | 90.09 | 91.8918 |
2018 | HILDA | GREENBAUM | 267.00 | 272.3400 |
2020 | CHRISTOPHER | GREENFIELD | 1773.85 | 1809.3270 |
2018 | LAURENE | GRENIER | 66.00 | 67.3200 |
2020 | JUDY LYNN | GRIESEMER | 7500.00 | 7650.0000 |
2018 | SHIRLEY | GRIFFIN | 231.00 | 235.6200 |
2020 | SHIRLEY | GRIFFIN | 90.09 | 91.8918 |
2018 | JOANN | GRISWOLD | 121.00 | 123.4200 |
2020 | JOANN | GRISWOLD | 102.96 | 105.0192 |
2020 | HEATHER | GROSS | 168.64 | 172.0128 |
2018 | JON | GROSS | 261.00 | 266.2200 |
2018 | RONALD | GROSSLEIN | 72.00 | 73.4400 |
2018 | JENNIFER | GUCCIONE | 2459.00 | 2508.1800 |
2020 | AISLINN | GUINEE | 1918.83 | 1957.2066 |
2018 | EMILY | GUISTI | 1938.00 | 1976.7600 |
2018 | JENNIFER | GULICK | 351.00 | 358.0200 |
2018 | JENNIFER | GUNDERSEN | 140909.00 | 143727.1800 |
2018 | RYAN | GWYTHER | 82993.00 | 84652.8600 |
2020 | RYAN | GWYTHER | 92022.48 | 93862.9296 |
2018 | DARRYL | HAGAR | 20237.00 | 20641.7400 |
2020 | DARRYL | HAGAR | 22965.96 | 23425.2792 |
2018 | TYLER | HALLOCK | 2141.00 | 2183.8200 |
2020 | VIRGINIA | HAMILTON | 167.31 | 170.6562 |
2018 | LOUISE | HAMMANN | 209.00 | 213.1800 |
2020 | LOUISE | HAMMANN | 92.82 | 94.6764 |
2018 | DONNA | HANCOCK | 99.00 | 100.9800 |
2020 | DONNA | HANCOCK | 15539.82 | 15850.6164 |
2018 | COLIN | HANNAHAN | 737.00 | 751.7400 |
2020 | MANDI JO | HANNEKE | 5000.04 | 5100.0408 |
2018 | SEAN | HANNON | 102794.00 | 104849.8800 |
2020 | SEAN | HANNON | 114731.67 | 117026.3034 |
2018 | CYNTHIA | HARBESON | 61306.00 | 62532.1200 |
2020 | CYNTHIA | HARBESON | 70277.37 | 71682.9174 |
2018 | MARY | HARRAGHY | 209.00 | 213.1800 |
2020 | MARY | HARRAGHY | 270.27 | 275.6754 |
2018 | JOSHUA | HARRIS | 78946.00 | 80524.9200 |
2020 | JOSHUA | HARRIS | 89455.04 | 91244.1408 |
2020 | RITA | HART | 1500.00 | 1530.0000 |
2018 | FAIZAN | HASSAN | 4482.00 | 4571.6400 |
2020 | FAIZAN | HASSAN | 4604.21 | 4696.2942 |
2020 | JEFFREY | HATCH | 1500.00 | 1530.0000 |
2018 | RALPH | HATHAWAY | 54511.00 | 55601.2200 |
2020 | RALPH | HATHAWAY | 63071.19 | 64332.6138 |
2020 | AARON | HAYDEN | 364.00 | 371.2800 |
2018 | SAMUEL | HEBB | 104153.00 | 106236.0600 |
2018 | BRADFORD | HENDRICKS | 9784.00 | 9979.6800 |
2018 | WALTER | HENRY | 46581.00 | 47512.6200 |
2020 | WALTER | HENRY | 50548.61 | 51559.5822 |
2018 | CAROL | HEPBURN | 60520.00 | 61730.4000 |
2020 | CAROL | HEPBURN | 64764.61 | 66059.9022 |
2018 | DEBORAH | HERBERT | 261.00 | 266.2200 |
2020 | DEBORAH | HERBERT | 275.73 | 281.2446 |
2018 | CORRINE | HERLIHY | 3839.00 | 3915.7800 |
2020 | EUGENE | HERMAN | 1500.00 | 1530.0000 |
2020 | MARY | HERMAN | 1500.00 | 1530.0000 |
2018 | JOSEPHINE | HERNANDEZ | 1486.00 | 1515.7200 |
2018 | GEORGE | HICKS | 65915.00 | 67233.3000 |
2020 | GEORGE | HICKS-RICHARDS | 74184.64 | 75668.3328 |
2018 | MATTHEW | HILDRETH | 2640.00 | 2692.8000 |
2018 | KENDALL | HILL | 57745.00 | 58899.9000 |
2020 | OLIVIA | HILLMEYER | 7930.56 | 8089.1712 |
2018 | LEGRAND | HINES | 138.00 | 140.7600 |
2020 | LEAH | HIRSHBERG | 96.53 | 98.4606 |
2020 | JESSE | HLAVA | 90.09 | 91.8918 |
2018 | MARY | HOCKEN | 154.00 | 157.0800 |
2020 | MARY | HOCKEN | 57.92 | 59.0784 |
2018 | JANET | HOFFMAN | 245.00 | 249.9000 |
2018 | KENNETH | HOFFMAN | 353.00 | 360.0600 |
2020 | KENNETH | HOFFMAN | 191.24 | 195.0648 |
2018 | CHRIS | HOFFMANN | 306.00 | 312.1200 |
2020 | CHRIS | HOFFMANN | 389.31 | 397.0962 |
2018 | PAUL | HOLDEN | 8043.00 | 8203.8600 |
2020 | PAUL | HOLDEN | 11118.15 | 11340.5130 |
2018 | DAVID | HOLMES | 6947.00 | 7085.9400 |
2020 | DAVID | HOLMES | 5822.74 | 5939.1948 |
2018 | ANNELISE | HOLMI | 1891.00 | 1928.8200 |
2018 | DANA | HOPKINS MCGILL | 2788.00 | 2843.7600 |
2020 | DANA | HOPKINS MCGILL | 5253.33 | 5358.3966 |
2020 | JEANNE | HORRIGAN | 295.43 | 301.3386 |
2018 | MARGERY | HOWELL | 88.00 | 89.7600 |
2020 | MARY | HUBBELL | 90.09 | 91.8918 |
2018 | GALE | HUBLEY | 77.00 | 78.5400 |
2018 | SUSAN | HUGUS | 61052.00 | 62273.0400 |
2020 | SUSAN | HUGUS | 65934.45 | 67253.1390 |
2018 | REBECCA | HULL | 124.00 | 126.4800 |
2018 | ANDREW | HULSE | 86247.00 | 87971.9400 |
2020 | ANDREW | HULSE | 92243.96 | 94088.8392 |
2018 | MARCUS | HUMBER | 96441.00 | 98369.8200 |
2020 | MARCUS | HUMBER | 92377.35 | 94224.8970 |
2018 | RALPH | HURWITZ | 36020.00 | 36740.4000 |
2020 | RALPH | HURWITZ | 39209.37 | 39993.5574 |
2018 | JOHN | IMBIMBO | 67272.00 | 68617.4400 |
2020 | JOHN | IMBIMBO | 50422.52 | 51430.9704 |
2018 | JOHN | INGRAM | 93421.00 | 95289.4200 |
2020 | JOHN | INGRAM | 102722.85 | 104777.3070 |
2018 | CYRUS | IRANI | 1447.00 | 1475.9400 |
2020 | CYRUS | IRANI | 312.11 | 318.3522 |
2020 | DARIUS | IRANI | 68.60 | 69.9720 |
2018 | JOSEPH | ISABELLE | 42735.00 | 43589.7000 |
2020 | JOSEPH | ISABELLE | 8371.66 | 8539.0932 |
2018 | GLENN | JACKSON | 79652.00 | 81245.0400 |
2020 | ERIN | JACQUE | 42924.91 | 43783.4082 |
2018 | MICHAEL | JACQUE | 52892.00 | 53949.8400 |
2020 | MICHAEL | JACQUE | 59912.93 | 61111.1886 |
2020 | MARY | JAFFEE | 99.74 | 101.7348 |
2020 | SARCENAS | JEAN-PHILIPPE | 1138.60 | 1161.3720 |
2020 | NANCY | JENAL | 180.18 | 183.7836 |
2020 | TAMMY | JEZEK | 47113.28 | 48055.5456 |
2018 | BRIAN | JOHNSON | 132524.00 | 135174.4800 |
2020 | BRIAN | JOHNSON | 135750.79 | 138465.8058 |
2020 | BROOKE | JOHNSON | 39028.53 | 39809.1006 |
2018 | CHRISTOPHER | JOHNSON | 57256.00 | 58401.1200 |
2018 | MARJORIE | JOHNSON | 124.00 | 126.4800 |
2020 | MARJORIE | JOHNSON | 102.96 | 105.0192 |
2020 | MARK | JOHNSON | 270.27 | 275.6754 |
2018 | JOY | JOLIE | 59139.00 | 60321.7800 |
2020 | JOY | JOLIE | 65043.12 | 66343.9824 |
2018 | JAMES | JORDAN | 79126.00 | 80708.5200 |
2020 | JAMES | JORDAN | 80683.27 | 82296.9354 |
2020 | MARION | JORDAN | 54084.45 | 55166.1390 |
2018 | KATHRYN | JULIAN | 2677.00 | 2730.5400 |
2020 | NYINDU | KABANGU | 68.60 | 69.9720 |
2018 | STEVEN | KACEY | 183.00 | 186.6600 |
2020 | STEVEN | KACEY | 47754.77 | 48709.8654 |
2018 | MIRIAM | KAPLAN | 30434.00 | 31042.6800 |
2018 | JULIE | KARLSSON | 7182.00 | 7325.6400 |
2018 | ARI | KASAL | 79560.00 | 81151.2000 |
2020 | ARI | KASAL | 89112.94 | 90895.1988 |
2018 | MICHAEL | KATZ | 600.00 | 612.0000 |
2020 | MICHAEL | KATZ | 750.00 | 765.0000 |
2018 | RACHAEL | KATZ | 9054.00 | 9235.0800 |
2020 | RACHAEL | KATZ | 74.60 | 76.0920 |
2018 | ELIJAH | KAYSER-HIRSH | 149.00 | 151.9800 |
2018 | MEGHAN | KEAN | 636.00 | 648.7200 |
2018 | MARC | KEENAN | 3725.00 | 3799.5000 |
2020 | MARC | KEENAN | 2278.00 | 2323.5600 |
2018 | PHYLLIS | KEENAN | 55.00 | 56.1000 |
2020 | PHYLLIS | KEENAN | 74.00 | 75.4800 |
2018 | JANE | KELLEY | 267.00 | 272.3400 |
2020 | JANE | KELLEY | 304.98 | 311.0796 |
2020 | WYATT | KELLMAN | 90.09 | 91.8918 |
2020 | BRENDAN | KELLY | 2156.40 | 2199.5280 |
2018 | SUSAN | KELLY | 173.00 | 176.4600 |
2020 | SUSAN | KELLY | 122.41 | 124.8582 |
2020 | DAVID | KELSEN | 21497.94 | 21927.8988 |
2020 | DONNA-RAE | KENNEALLY | 19103.10 | 19485.1620 |
2018 | JOHN | KENNEDY | 93408.00 | 95276.1600 |
2020 | JOHN | KENNEDY | 121002.10 | 123422.1420 |
2020 | REMINGTON | KEYES | 90.12 | 91.9224 |
2018 | JOHN | KICK | 95.00 | 96.9000 |
2018 | THELMA | KILLINGS | 110.00 | 112.2000 |
2018 | DAVID | KING | 110.00 | 112.2000 |
2020 | DEVON | KING | 263.83 | 269.1066 |
2020 | MATTHEW | KING | 11229.46 | 11454.0492 |
2018 | SHOSHONA | KING | 149.00 | 151.9800 |
2020 | SHOSHONA | KING | 209.14 | 213.3228 |
2020 | ERIN | KLAES | 2035.30 | 2076.0060 |
2020 | NOLAN | KLAES | 473.44 | 482.9088 |
2018 | DUANE | KLIMCZYK | 104604.00 | 106696.0800 |
2020 | DUANE | KLIMCZYK | 97872.68 | 99830.1336 |
2018 | BRIAN | KNIGHTLY | 61379.00 | 62606.5800 |
2020 | BRIAN | KNIGHTLY | 63645.04 | 64917.9408 |
2018 | CHRISTINA | KNIGHTLY | 91312.00 | 93138.2400 |
2020 | CHRISTINA | KNIGHTLY | 71373.52 | 72800.9904 |
2018 | DAVID | KNIGHTLY | 116906.00 | 119244.1200 |
2020 | DAVID | KNIGHTLY | 90392.65 | 92200.5030 |
2020 | LOUIS | KNOLLE | 34304.01 | 34990.0902 |
2018 | ERIC | KNYT | 4390.00 | 4477.8000 |
2020 | ERIC | KNYT | 3866.16 | 3943.4832 |
2020 | CAROL | KOLENIK | 117.41 | 119.7582 |
2018 | MICHAEL | KONETZNY | 81201.00 | 82825.0200 |
2018 | ELLEN | KOSMER | 77.00 | 78.5400 |
2020 | KAREN | KOWLES | 1500.00 | 1530.0000 |
2018 | NOAH | KRAMER | 4793.00 | 4888.8600 |
2020 | NOAH | KRAMER | 1146.06 | 1168.9812 |
2018 | KAY | KRANICK-WEINBERG | 110.00 | 112.2000 |
2020 | KAY | KRANICK-WEINBERG | 1500.00 | 1530.0000 |
2018 | GEOFFREY | KRAVITZ | 85334.00 | 87040.6800 |
2020 | GEOFFREY | KRAVITZ | 14505.92 | 14796.0384 |
2018 | LILIAN | KRAVTIZ | 110.00 | 112.2000 |
2018 | ELIZABETH | KROGH | 236.00 | 240.7200 |
2020 | ELIZABETH | KROGH | 182.91 | 186.5682 |
2018 | CONSTANCE | KRUGER | 80.00 | 81.6000 |
2018 | CONSTANCE | KRUGER | 1500.00 | 1530.0000 |
2018 | MITCHELL | KUC | 1585.00 | 1616.7000 |
2020 | MITCHELL | KUC | 2910.60 | 2968.8120 |
2018 | DINAH | KUDATSKY | 121.00 | 123.4200 |
2020 | DINAH | KUDATSKY | 102.96 | 105.0192 |
2020 | OWEN | KUPPERMAN | 454.80 | 463.8960 |
2020 | SHIRLEY | KURTULUS | 1500.00 | 1530.0000 |
2018 | KEVIN | L’ITALIEN | 78418.00 | 79986.3600 |
2020 | DAVID | LABANC | 1199.50 | 1223.4900 |
2020 | CHRISTINE | LABICH | 212.36 | 216.6072 |
2018 | ALEX | LACROSSE | 630.00 | 642.6000 |
2018 | ADAM | LADD | 1857.00 | 1894.1400 |
2020 | ADAM | LADD | 135.18 | 137.8836 |
2018 | JENNIFER | LAFOUNTAIN | 76905.00 | 78443.1000 |
2020 | JENNIFER | LAFOUNTAIN | 92294.23 | 94140.1146 |
2018 | JOSEPH | LAGASSE | 82167.00 | 83810.3400 |
2020 | JOSEPH | LAGASSE | 93079.17 | 94940.7534 |
2018 | NOAH | LAMB | 1051.00 | 1072.0200 |
2020 | NOAH | LAMB | 1011.88 | 1032.1176 |
2018 | DERICK | LAMOUREUX | 414.00 | 422.2800 |
2020 | DERICK | LAMOUREUX | 646.80 | 659.7360 |
2018 | JESSICA | LAMSON | 33828.00 | 34504.5600 |
2020 | JESSICA | LAMSON | 42634.38 | 43487.0676 |
2018 | TODD | LANG | 170892.00 | 174309.8400 |
2020 | TODD | LANG | 172626.81 | 176079.3462 |
2020 | AMY | LANGDON | 103.95 | 106.0290 |
2018 | PHELAN | LAPAN | 204.00 | 208.0800 |
2020 | JEREMIAH | LAPLANTE | 60014.38 | 61214.6676 |
2020 | STEPHANIE | LAPLANTE | 1366.83 | 1394.1666 |
2018 | HENRY | LAPPEN | 88.00 | 89.7600 |
2018 | WILLIAM | LARAMEE | 92001.00 | 93841.0200 |
2020 | WILLIAM | LARAMEE | 98803.32 | 100779.3864 |
2018 | CATHERINE | LARSON | 4959.00 | 5058.1800 |
2020 | CATHERINE | LARSON | 1057.52 | 1078.6704 |
2018 | MEHRENE | LARUDEE | 176.00 | 179.5200 |
2020 | MEHRENE | LARUDEE | 102.96 | 105.0192 |
2018 | ELIZABETH | LASS | 63641.00 | 64913.8200 |
2020 | ELIZABETH | LASS | 801.31 | 817.3362 |
2018 | BRIAN | LATHAM | 21400.00 | 21828.0000 |
2018 | EVAN | LATVALLA | 4425.00 | 4513.5000 |
2020 | EVAN | LATVALLA | 20056.51 | 20457.6402 |
2018 | MARY JANE | LAUS | 276.00 | 281.5200 |
2020 | MARY JANE | LAUS | 291.82 | 297.6564 |
2020 | JACK | LAXSON | 102.96 | 105.0192 |
2018 | ANASTASIA | LECUIVRE | 74446.00 | 75934.9200 |
2018 | CAROLINE | LEDERMAN | 282.00 | 287.6400 |
2020 | CAROLINE | LEDERMAN | 2233.73 | 2278.4046 |
2018 | PAMELA | LEDOUX | 418.00 | 426.3600 |
2020 | PAMELA | LEDOUX | 102.96 | 105.0192 |
2018 | DIANNE | LEDUC | 9922.00 | 10120.4400 |
2020 | DIANNE | LEDUC | 14009.48 | 14289.6696 |
2018 | EMMA | LEE | 644.00 | 656.8800 |
2020 | MICHAEL | LEFLAR | 109.28 | 111.4656 |
2018 | PHYLLIS | LEHRER | 165.00 | 168.3000 |
2020 | PHYLLIS | LEHRER | 180.18 | 183.7836 |
2018 | MICHAEL | LENART | 6129.00 | 6251.5800 |
2020 | MYRA | LENBURG | 93.31 | 95.1762 |
2020 | SAMUEL | LEONARD | 5613.77 | 5726.0454 |
2018 | ROBIN | LEVINE | 4709.00 | 4803.1800 |
2020 | ROBIN | LEVINE | 1033.74 | 1054.4148 |
2018 | JENNIFER | LEWIS | 55.00 | 56.1000 |
2020 | KEYVIN | LEWIS | 21943.97 | 22382.8494 |
2020 | KALSANG | LHAMO | 180.18 | 183.7836 |
2018 | TYLER | LIBONATE | 1078.00 | 1099.5600 |
2020 | TYLER | LIBONATE | 3074.67 | 3136.1634 |
2018 | JUDITH | LINCOLN | 11108.00 | 11330.1600 |
2018 | KRISTEN | LINDBERG | 4282.00 | 4367.6400 |
2020 | KRISTEN | LINDBERG | 4820.58 | 4916.9916 |
2018 | ELLEN | LINDSEY | 55.00 | 56.1000 |
2020 | ELLEN | LINDSEY | 679.33 | 692.9166 |
2020 | JOSEPH | LISSECK | 1500.00 | 1530.0000 |
2020 | MARY | LISSECK | 1500.00 | 1530.0000 |
2020 | KEVIN | LITALIEN | 84267.73 | 85953.0846 |
2018 | KIM | LITTMANN | 60336.00 | 61542.7200 |
2020 | KIM | LITTMANN | 65144.13 | 66447.0126 |
2018 | SCOTT | LIVINGSTONE | 157452.00 | 160601.0400 |
2020 | SCOTT | LIVINGSTONE | 172109.78 | 175551.9756 |
2020 | KUEI | LO | 12703.75 | 12957.8250 |
2018 | NASH | LOCHNER | 612.00 | 624.2400 |
2020 | JOHN | LOEB | 180.18 | 183.7836 |
2018 | CHERYL | LOFLAND | 67399.00 | 68746.9800 |
2020 | CHERYL | LOFLAND | 72770.99 | 74226.4098 |
2020 | ELIZABETH | LOFTUS | 2484.18 | 2533.8636 |
2018 | GALE | LONGTO | 256.00 | 261.1200 |
2020 | GALE | LONGTO | 3169.13 | 3232.5126 |
2018 | KEITH | LONGTO | 77321.00 | 78867.4200 |
2020 | KEITH | LONGTO | 68741.07 | 70115.8914 |
2018 | JANET | LOPEZ | 118737.00 | 121111.7400 |
2020 | JANET | LOPEZ | 116041.14 | 118361.9628 |
2020 | HEATHER | LORD | 2087.65 | 2129.4030 |
2018 | DAVID | LOVLER | 206.00 | 210.1200 |
2018 | SUSAN | LOWERY | 132.00 | 134.6400 |
2020 | SUSAN | LOWERY | 319.02 | 325.4004 |
2020 | JOSEPH | LUGO | 12.87 | 13.1274 |
2018 | CHRISTINA | LUPICA | 3911.00 | 3989.2200 |
2018 | CHARLES | LYDON | 6573.00 | 6704.4600 |
2020 | AMY MEI | LYNCH | 96.53 | 98.4606 |
2020 | JAILENE | LYNCH | 48655.75 | 49628.8650 |
2020 | ELIZABETH | MABEE | 90.09 | 91.8918 |
2018 | JAMES | MACALLISTER | 110.00 | 112.2000 |
2020 | ALEXANDER | MACDONALD | 889.94 | 907.7388 |
2018 | RICHARD | MACLEAN | 118096.00 | 120457.9200 |
2020 | RICHARD | MACLEAN | 116277.22 | 118602.7644 |
2018 | HELEN | MACMELLON | 58715.00 | 59889.3000 |
2020 | HELEN | MACMELLON | 67339.71 | 68686.5042 |
2020 | DELANEY | MACPHETRES | 1070.34 | 1091.7468 |
2018 | JOHN | MAGARIAN | 165.00 | 168.3000 |
2020 | JOHN | MAGARIAN | 102.96 | 105.0192 |
2018 | ILANA | MAHLER | 3839.00 | 3915.7800 |
2020 | JANE | MAHMOODI | 1500.00 | 1530.0000 |
2018 | JACQUELINE | MAIDANA | 50.00 | 51.0000 |
2020 | JACQUELINE | MAIDANA | 90.09 | 91.8918 |
2018 | CADEN | MAINZER | 169.00 | 172.3800 |
2020 | CADEN | MAINZER | 66.30 | 67.6260 |
2018 | LEWIS | MAINZER | 165.00 | 168.3000 |
2020 | LEWIS | MAINZER | 64.35 | 65.6370 |
2020 | JANE | MAIRS | 93.31 | 95.1762 |
2018 | MARY | MALINOWSKI | 88.00 | 89.7600 |
2018 | NATHANIEL | MALLOY | 77517.00 | 79067.3400 |
2020 | NATHANIEL | MALLOY | 90546.73 | 92357.6646 |
2018 | SUSAN | MALONE | 60303.00 | 61509.0600 |
2020 | SUSAN | MALONE | 76475.66 | 78005.1732 |
2020 | AIDAN | MALONEY | 445.11 | 454.0122 |
2020 | PATRICK | MANEY | 550.72 | 561.7344 |
2020 | SEAN | MANGANO | 95457.04 | 97366.1808 |
2018 | DEBORAH | MANN | 88.00 | 89.7600 |
2018 | ARLENE | MANNING | 146.00 | 148.9200 |
2020 | ARLENE | MANNING | 90.09 | 91.8918 |
2018 | ANNA | MARCZUK | 187.00 | 190.7400 |
2018 | GRAZYNA | MARCZUK | 47733.00 | 48687.6600 |
2020 | GRAZYNA | MARCZUK | 56638.95 | 57771.7290 |
2018 | DANIELLE | MARIE | 1623.00 | 1655.4600 |
2018 | CLAUDIA | MARINERO | 4813.00 | 4909.2600 |
2020 | EMMA | MARKHAM | 183.40 | 187.0680 |
2018 | SHIRLEY | MARKHAM | 116.00 | 118.3200 |
2020 | SHIRLEY | MARKHAM | 253.68 | 258.7536 |
2018 | JANET | MARQUARDT | 204.00 | 208.0800 |
2020 | JANET | MARQUARDT | 70.79 | 72.2058 |
2020 | ANN MARIE | MARQUIS | 12443.06 | 12691.9212 |
2018 | SARAH | MARSHALL | 160.00 | 163.2000 |
2020 | SARAH | MARSHALL | 308.98 | 315.1596 |
2018 | PAUL | MARSHUK | 1480.00 | 1509.6000 |
2018 | MARCIN | MARSZALEK | 15226.00 | 15530.5200 |
2020 | MARCIN | MARSZALEK | 15011.16 | 15311.3832 |
2018 | DAVID | MARTELL | 96580.00 | 98511.6000 |
2020 | DAVID | MARTELL | 110595.84 | 112807.7568 |
2020 | MARTHA | MARTENEY | 175.36 | 178.8672 |
2020 | AMBER | MARTIN | 56203.21 | 57327.2742 |
2020 | SHAVENA | MARTIN | 63503.48 | 64773.5496 |
2020 | TAYLOR | MARTIN-GRAHAM | 322.93 | 329.3886 |
2018 | VALDISHKA | MARTINEZ | 2060.00 | 2101.2000 |
2018 | TYLER | MARTINS | 9156.00 | 9339.1200 |
2020 | TYLER | MARTINS | 101617.30 | 103649.6460 |
2018 | PATRICIA | MASCIS | 257.00 | 262.1400 |
2020 | PATRICIA | MASCIS | 112.71 | 114.9642 |
2020 | JOSEPH | MASPO | 5429.82 | 5538.4164 |
2020 | BETSY | MATHEWS | 293.69 | 299.5638 |
2018 | ELIZABETH | MATTHEWS | 4397.00 | 4484.9400 |
2020 | ELIZABETH | MATTHEWS | 8196.17 | 8360.0934 |
2018 | MICHELE | MATUSZKO | 63213.00 | 64477.2600 |
2020 | MICHELE | MATUSZKO | 68509.21 | 69879.3942 |
2018 | JULIA | MAWSON | 401.00 | 409.0200 |
2020 | JULIA | MAWSON | 95.62 | 97.5324 |
2018 | ROBERT | MCALLISTER | 512.00 | 522.2400 |
2018 | STEVEN | MCCARTHY | 45758.00 | 46673.1600 |
2020 | STEVEN | MCCARTHY | 60295.04 | 61500.9408 |
2018 | LAURIE | MCCOMB | 85068.00 | 86769.3600 |
2020 | LAURIE | MCCOMB | 92916.98 | 94775.3196 |
2020 | LINDSEY | MCCONNELL | 2022.83 | 2063.2866 |
2020 | WILLIAM | MCCUTCHEON | 31.75 | 32.3850 |
2020 | ALLISON | MCDONALD | 1999.98 | 2039.9796 |
2018 | JOHN | MCDONALD | 2538.00 | 2588.7600 |
2020 | JOHN | MCDONALD | 261.39 | 266.6178 |
2018 | CLAIRE | MCGINNIS | 43478.00 | 44347.5600 |
2018 | BARBARA | MCGLYNN | 3255.00 | 3320.1000 |
2020 | BARBARA | MCGLYNN | 4295.22 | 4381.1244 |
2018 | JOSEPH | MCGLYNN | 6976.00 | 7115.5200 |
2018 | ERIC | MCGRATH | 94.00 | 95.8800 |
2018 | VIANKA | MCKENZIE | 2150.00 | 2193.0000 |
2020 | VIANKA | MCKENZIE | 3290.19 | 3355.9938 |
2020 | ELIZABETH | MCLAUGHLIN | 180.18 | 183.7836 |
2020 | MADELEINE | MCLAUGHLIN | 5262.52 | 5367.7704 |
2018 | ALLISON | MCNAMARA | 4349.00 | 4435.9800 |
2020 | PATRICIA | MCPEAK-LAROCCA | 193.05 | 196.9110 |
2018 | MICHAEL | MEADE | 132.00 | 134.6400 |
2020 | MICHAEL | MEADE | 99.74 | 101.7348 |
2018 | MICHAEL | MEAGHER | 231.00 | 235.6200 |
2020 | MICHAEL | MEAGHER | 238.10 | 242.8620 |
2018 | JORDAN | MEIER | 333.00 | 339.6600 |
2020 | LAURA | MELBIN | 90.09 | 91.8918 |
2018 | JOEL | MELENDEZ | 5106.00 | 5208.1200 |
2020 | JOEL | MELENDEZ | 4114.38 | 4196.6676 |
2020 | DANIEL | MENARD | 49403.20 | 50391.2640 |
2018 | WILLIAM | MENARD | 112110.00 | 114352.2000 |
2020 | WILLIAM | MENARD | 112471.56 | 114720.9912 |
2018 | MIRA | MENON | 55.00 | 56.1000 |
2018 | JOSEPH | MERCIER | 73986.00 | 75465.7200 |
2020 | JOSEPH | MERCIER | 84977.56 | 86677.1112 |
2018 | DOROTHY | MERRIAM | 77.00 | 78.5400 |
2020 | DOROTHY | MERRIAM | 186.62 | 190.3524 |
2018 | WILLIAM | MESSER | 2330.00 | 2376.6000 |
2018 | ADAM | METZGER | 42270.00 | 43115.4000 |
2020 | ADAM | METZGER | 1547.51 | 1578.4602 |
2018 | ERIKA | MIJLIN | 132.00 | 134.6400 |
2018 | AUSTIN | MILES | 1040.00 | 1060.8000 |
2020 | AUSTIN | MILES | 1677.43 | 1710.9786 |
2018 | JOHN | MILLER | 3140.00 | 3202.8000 |
2020 | JOHN | MILLER | 41292.31 | 42118.1562 |
2018 | SUSAN | MILLIKEN-ROGERS | 77.00 | 78.5400 |
2018 | ANGELA | MILLS | 26733.00 | 27267.6600 |
2020 | ANGELA | MILLS | 58950.39 | 60129.3978 |
2020 | SHALINI BAHL | MILNE | 5000.04 | 5100.0408 |
2018 | DAVID | MINER | 110974.00 | 113193.4800 |
2020 | DAVID | MINER | 99210.99 | 101195.2098 |
2018 | JOSEPH | MIRAGLIA | 57645.00 | 58797.9000 |
2018 | JOANNE | MISIASZEK | 66232.00 | 67556.6400 |
2020 | JOANNE | MISIASZEK | 78055.52 | 79616.6304 |
2020 | BRIAN | MITCHELL | 11608.27 | 11840.4354 |
2020 | CHLOE | MITCHELL | 32.18 | 32.8236 |
2018 | LUC | MITCHELL | 3187.00 | 3250.7400 |
2018 | EDWARD | MONE | 507.00 | 517.1400 |
2020 | EDWARD | MONE | 301.67 | 307.7034 |
2020 | TODD | MONGEON | 646.80 | 659.7360 |
2018 | MILAGROS | MONTEMAYOR | 33.00 | 33.6600 |
2020 | KAYDEN | MOORE | 148.01 | 150.9702 |
2018 | GUILFORD | MOORING | 126203.00 | 128727.0600 |
2020 | GUILFORD | MOORING | 143171.29 | 146034.7158 |
2018 | ALBERTO | MORALES-FERNANDEZ | 3191.00 | 3254.8200 |
2020 | ALBERTO | MORALES-FERNANDEZ | 1923.71 | 1962.1842 |
2018 | LUCAS | MORALES-FERNANDEZ | 550.00 | 561.0000 |
2020 | SHARON | MORGAN | 112.71 | 114.9642 |
2018 | ROBERT | MORRA | 102333.00 | 104379.6600 |
2020 | ROBERT | MORRA | 115846.68 | 118163.6136 |
2018 | BRIAN | MORRIS | 67391.00 | 68738.8200 |
2020 | BRIAN | MORRIS | 73721.53 | 75195.9606 |
2018 | RICHARD | MORSE | 732.00 | 746.6400 |
2020 | RICHARD | MORSE | 498.59 | 508.5618 |
2020 | ALICIA | MORTON | 1500.00 | 1530.0000 |
2020 | THOMAS | MORTON | 1500.00 | 1530.0000 |
2020 | ANNABEL | MOTT | 714.30 | 728.5860 |
2020 | STANLEY | MOULTON | 102.96 | 105.0192 |
2018 | RAMZI | MOUSHABECK | 3949.00 | 4027.9800 |
2020 | ISAIAH | MOYSTON | 1735.64 | 1770.3528 |
2018 | JENNIFER | MOYSTON | 52852.00 | 53909.0400 |
2020 | JENNIFER | MOYSTON | 62398.95 | 63646.9290 |
2020 | JENNIFER | MULLINS | 67109.74 | 68451.9348 |
2018 | MARISA | MULVEY | 329.00 | 335.5800 |
2020 | MARISA | MULVEY | 112.88 | 115.1376 |
2018 | MICHAEL | MURPHY | 58.00 | 59.1600 |
2018 | NANCY | MURPHY | 57486.00 | 58635.7200 |
2020 | NANCY | MURPHY | 63215.10 | 64479.4020 |
2020 | SHAWN | MURPHY | 814.03 | 830.3106 |
2020 | LINDA | MURRAY | 115.19 | 117.4938 |
2018 | RACHEL | MUSTIN | 66.00 | 67.3200 |
2018 | ALINE | MWEZE | 1495.00 | 1524.9000 |
2018 | NATALIE | NADEAU | 704.00 | 718.0800 |
2020 | NATALIE | NADEAU | 95.25 | 97.1550 |
2020 | KATE | NADOLSKI | 2984.90 | 3044.5980 |
2018 | KASEY | NAGLE | 88710.00 | 90484.2000 |
2020 | KASEY | NAGLE | 95659.11 | 97572.2922 |
2018 | MARGARET | NARTOWICZ | 32193.00 | 32836.8600 |
2018 | OLIVIER | NDIKUMANA | 5386.00 | 5493.7200 |
2020 | OLIVIER | NDIKUMANA | 533.48 | 544.1496 |
2018 | TIMOTHY | NEALE | 341.00 | 347.8200 |
2020 | TIMOTHY | NEALE | 594.22 | 606.1044 |
2018 | KATHLEEN | NELSON | 13678.00 | 13951.5600 |
2018 | WALTER | NELSON | 143734.00 | 146608.6800 |
2020 | WALTER | NELSON | 160049.71 | 163250.7042 |
2020 | DEBORAH | NEUBAUER | 70.79 | 72.2058 |
2018 | LINDA | NEWCOMB | 8643.00 | 8815.8600 |
2020 | LINDA | NEWCOMB | 2940.92 | 2999.7384 |
2020 | KATHERINE | NEWELL | 80867.12 | 82484.4624 |
2020 | ANDREA | NEWMAN | 106.18 | 108.3036 |
2020 | CATHERINE | NEWMAN | 148.01 | 150.9702 |
2020 | KATHERINE | NEWMAN | 20049.16 | 20450.1432 |
2018 | JUSTIN | NIGRELLI | 739.00 | 753.7800 |
2018 | MARTIN | NORDEN | 143.00 | 145.8600 |
2020 | MARTIN | NORDEN | 304.99 | 311.0898 |
2020 | ELIJAH | NORMAN | 6388.46 | 6516.2292 |
2018 | BENEDIKT | NUESSLEIN | 1439.00 | 1467.7800 |
2018 | CHRISTOPH | NUESSLEIN | 2458.00 | 2507.1600 |
2020 | CHRISTOPH | NUESSLEIN | 3506.42 | 3576.5484 |
2020 | STEFAN | NUESSLEIN | 1788.07 | 1823.8314 |
2020 | AMY | NUSSBAUM | 215.58 | 219.8916 |
2018 | JOHN | NYARKO | 311.00 | 317.2200 |
2018 | SAMSON | NYMPHA | 1172.00 | 1195.4400 |
2018 | CLAUDIA | O’BRIEN | 397.00 | 404.9400 |
2020 | CLAUDIA | O’BRIEN | 167.34 | 170.6868 |
2018 | CODY | O’BRIEN | 24823.00 | 25319.4600 |
2018 | KELLY | O’BRIEN | 9449.00 | 9637.9800 |
2020 | ROBERT | O’BRIEN | 35818.44 | 36534.8088 |
2020 | MARY | O’CONNOR | 121.23 | 123.6546 |
2018 | ATHENA | O’KEEFFE | 45741.00 | 46655.8200 |
2020 | ALANA | O’LOUGHLIN | 1023.09 | 1043.5518 |
2020 | JOAN | O’MEARA | 83.66 | 85.3332 |
2018 | LIAM | O’SULLIVAN | 1009.00 | 1029.1800 |
2020 | LIAM | O’SULLIVAN | 1672.58 | 1706.0316 |
2020 | MARY | OBRIEN | 551.70 | 562.7340 |
2020 | MARY BETH | OGULEWICZ | 82973.77 | 84633.2454 |
2020 | ATHENA | OKEEFFE | 63673.53 | 64947.0006 |
2018 | KELLY | OLANYK | 74162.00 | 75645.2400 |
2020 | KELLY | OLANYK | 74988.92 | 76488.6984 |
2018 | PATRICIA | OLANYK | 5810.00 | 5926.2000 |
2020 | PATRICIA | OLANYK | 6665.59 | 6798.9018 |
2018 | EMILY | OLES | 49951.00 | 50950.0200 |
2020 | EMILY | OLES | 4001.63 | 4081.6626 |
2018 | GABRIEL | OLIVA RAPOPORT | 212.00 | 216.2400 |
2018 | JEFFERY | OLMSTEAD | 129836.00 | 132432.7200 |
2020 | JEFFERY | OLMSTEAD | 139859.63 | 142656.8226 |
2020 | LISA | ORAM | 90.09 | 91.8918 |
2018 | ROBERT | ORRELL | 72492.00 | 73941.8400 |
2020 | ROBERT | ORRELL | 47449.52 | 48398.5104 |
2018 | ERIC | OSMAN | 149.00 | 151.9800 |
2018 | STEPHANIE | OSMAN | 182.00 | 185.6400 |
2018 | MIGUEL | OTERO | 46870.00 | 47807.4000 |
2020 | MIGUEL | OTERO | 52963.50 | 54022.7700 |
2020 | COURTNEY | OUSLEY | 4468.45 | 4557.8190 |
2018 | LANCE | OVERBY | 152.00 | 155.0400 |
2020 | LANCE | OVERBY | 249.90 | 254.8980 |
2018 | GABRIEL | OWEN | 15211.00 | 15515.2200 |
2020 | CYNTHIA | OWENS | 180.18 | 183.7836 |
2018 | NANCY | PAGANO | 93318.00 | 95184.3600 |
2018 | ELAINE | PALMER | 22.00 | 22.4400 |
2018 | LINDSAY | PALMER | 12750.00 | 13005.0000 |
2020 | LINDSAY | PALMER | 12089.54 | 12331.3308 |
2020 | DOROTHY | PAM | 5000.04 | 5100.0408 |
2018 | JOSE | PAREDES | 39917.00 | 40715.3400 |
2020 | JOSE | PAREDES | 51191.85 | 52215.6870 |
2018 | JANICE | PARKER-RILEY | 157.00 | 160.1400 |
2020 | JANICE | PARKER-RILEY | 1500.00 | 1530.0000 |
2020 | JANICE | PARKER-RILEY | 64.35 | 65.6370 |
2018 | TAMBETSU | PARKS | 229.00 | 233.5800 |
2020 | TAMBETSU | PARKS | 406.39 | 414.5178 |
2018 | JEFFREY | PARR | 88760.00 | 90535.2000 |
2020 | JEFFREY | PARR | 89840.77 | 91637.5854 |
2018 | JOHN | PASTORELLO | 4611.00 | 4703.2200 |
2020 | JOHN | PASTORELLO | 7763.64 | 7918.9128 |
2018 | MARILYN | PATTON | 55.00 | 56.1000 |
2018 | LUDMILLA | PAVLOVA-GILLHAM | 149.00 | 151.9800 |
2020 | LUDMILLA | PAVLOVA-GILLHAM | 341.50 | 348.3300 |
2020 | JUSTIN | PAYAN | 102.96 | 105.0192 |
2018 | TYLER | PEASE | 33425.00 | 34093.5000 |
2020 | TYLER | PEASE | 43349.97 | 44216.9694 |
2020 | DENIS | PELLETIER | 71661.92 | 73095.1584 |
2020 | COOPER | PENNIMAN | 135.03 | 137.7306 |
2018 | MICHAEL | PEREZ | 55122.00 | 56224.4400 |
2020 | MICHAEL | PEREZ | 60617.05 | 61829.3910 |
2018 | MELISSA | PEROT | 44.00 | 44.8800 |
2018 | JANICE | PETERMAN | 766.00 | 781.3200 |
2020 | JANICE | PETERMAN | 713.90 | 728.1780 |
2018 | TERRY | PETERS | 521.00 | 531.4200 |
2020 | TERRY | PETERS | 413.22 | 421.4844 |
2018 | MARY | PETERSON | 39.00 | 39.7800 |
2020 | JAMES | PEWTHERER | 102.97 | 105.0294 |
2018 | BRIDGETTE | PHILIBERT | 2819.00 | 2875.3800 |
2020 | BRIDGETTE | PHILIBERT | 2756.31 | 2811.4362 |
2018 | SUSAN | PHILLIPS | 121.00 | 123.4200 |
2020 | SUSAN | PHILLIPS | 1500.00 | 1530.0000 |
2020 | JONATHAN | PICKERING | 3031.91 | 3092.5482 |
2018 | PHYLLIS | PIKE | 369.00 | 376.3800 |
2018 | BARBARA | PISTRANG | 61.00 | 62.2200 |
2020 | BARBARA | PISTRANG | 119.34 | 121.7268 |
2020 | JAMES | PISTRANG | 383.31 | 390.9762 |
2018 | PENNINGTON | PITTS | 382.00 | 389.6400 |
2018 | CAROLYN | PLATT | 74909.00 | 76407.1800 |
2020 | CAROLYN | PLATT | 81089.36 | 82711.1472 |
2018 | LILY | PLOTKIN | 1861.00 | 1898.2200 |
2018 | BROOKE | PODSIADLO | 2495.00 | 2544.9000 |
2020 | BROOKE | PODSIADLO | 1866.38 | 1903.7076 |
2018 | ANTOINETTE | POLI | 165.00 | 168.3000 |
2018 | CORRADO | POLI | 154.00 | 157.0800 |
2018 | ANTONIO | POLINO | 2062.00 | 2103.2400 |
2020 | ANTONIO | POLINO | 3128.67 | 3191.2434 |
2018 | MAUREEN | POLLOCK | 54108.00 | 55190.1600 |
2020 | MAUREEN | POLLOCK | 66516.11 | 67846.4322 |
2018 | CHRISTOPHER | PRICE | 43389.00 | 44256.7800 |
2020 | CHRISTOPHER | PRICE | 49528.40 | 50518.9680 |
2018 | SARAH | PRICE | 146.00 | 148.9200 |
2018 | JESSICA | PRONOVOST | 68527.00 | 69897.5400 |
2020 | JESSICA | PRONOVOST | 74030.96 | 75511.5792 |
2018 | DEBRA | PUPPEL | 41313.00 | 42139.2600 |
2018 | NUJHAT | PURNATA | 3396.00 | 3463.9200 |
2018 | JOAN | PYFROM | 44835.00 | 45731.7000 |
2020 | JOAN | PYFROM | 49312.65 | 50298.9030 |
2018 | MARIA | RACCA | 82671.00 | 84324.4200 |
2018 | DEBORAH | RADWAY | 104450.00 | 106539.0000 |
2018 | JUDITH | RAIFFA | 55.00 | 56.1000 |
2020 | ANDREA | RAMIREZ FRANCO | 225.30 | 229.8060 |
2018 | MATTHEW | RANDALL | 3823.00 | 3899.4600 |
2020 | LOUIS | RANDAZZO | 948.86 | 967.8372 |
2020 | KAREN | RANEN | 6832.98 | 6969.6396 |
2018 | STEPHEN | RANSFORD | 143.00 | 145.8600 |
2020 | STEPHEN | RANSFORD | 1500.00 | 1530.0000 |
2020 | STEPHEN | RANSFORD | 90.09 | 91.8918 |
2018 | ROSEMARY | RATH | 110.00 | 112.2000 |
2018 | JANICE | RATNER | 332.00 | 338.6400 |
2020 | VIOLET | RAWLINGS | 154.44 | 157.5288 |
2020 | EMILY | REARDON | 2034.09 | 2074.7718 |
2020 | EMILY | REARDON | 48.26 | 49.2252 |
2018 | JAMIE | REARDON | 120386.00 | 122793.7200 |
2020 | JAMIE | REARDON | 138785.54 | 141561.2508 |
2018 | PATRICIA | RECTOR | 143.00 | 145.8600 |
2020 | PATRICIA | RECTOR | 1500.00 | 1530.0000 |
2020 | PATRICIA | RECTOR | 90.09 | 91.8918 |
2018 | WILLIAM | REDDER | 135.00 | 137.7000 |
2018 | MELINDA | REID | 113.00 | 115.2600 |
2020 | MELINDA | REID | 79.56 | 81.1512 |
2018 | ROSALIND | REID | 154.00 | 157.0800 |
2020 | DEVIN | REILLY | 630.84 | 643.4568 |
2020 | TRISTAN | RENTSCH | 173.75 | 177.2250 |
2020 | CATHERINE | REPETTI | 199.49 | 203.4798 |
2018 | BRETT | REPKE | 521.00 | 531.4200 |
2020 | NORYN | RESNICK | 189.83 | 193.6266 |
2018 | CRISTINA | REY PIRIZ | 2818.00 | 2874.3600 |
2018 | JENNIFER | REYNOLDS | 48255.00 | 49220.1000 |
2020 | JENNIFER | REYNOLDS | 62717.89 | 63972.2478 |
2018 | PENNY | RHODES | 132.00 | 134.6400 |
2020 | IAN | RHODEWALT | 157.66 | 160.8132 |
2018 | PAUL | RHUDE | 290.00 | 295.8000 |
2018 | DALE | RICE | 132.00 | 134.6400 |
2020 | DALE | RICE | 193.05 | 196.9110 |
2018 | CAITLYN | RICHMOND | 174.00 | 177.4800 |
2018 | MELISSA | RICKER-HORTON | 58652.00 | 59825.0400 |
2020 | MELISSA | RICKER-HORTON | 64565.44 | 65856.7488 |
2018 | TATE | RIETKIRK | 325.00 | 331.5000 |
2020 | TATE | RIETKIRK | 1689.02 | 1722.8004 |
2018 | MAEVE | RIORDAN | 421.00 | 429.4200 |
2020 | MIGUEL | RIVERA | 5945.75 | 6064.6650 |
2020 | EVELYN | RIVERA-RIFFENBURG | 53975.46 | 55054.9692 |
2018 | WILLIE | ROBERTS | 3801.00 | 3877.0200 |
2018 | MICHAYLA | ROBERTSON-PINE | 149.00 | 151.9800 |
2020 | LUCY | ROBINSON | 90.09 | 91.8918 |
2018 | JOSEPH | ROCASAH | 1031.00 | 1051.6200 |
2018 | ISAIAH | RODRIGUEZ | 858.00 | 875.1600 |
2018 | SARAH | ROE | 92177.00 | 94020.5400 |
2020 | SARAH | ROE | 89558.69 | 91349.8638 |
2020 | ELLA | ROMANELLI | 257.40 | 262.5480 |
2018 | ALYSIA | ROMANI | 1847.00 | 1883.9400 |
2018 | COLTON | ROOT | 127.00 | 129.5400 |
2020 | AALIYAH | ROSA | 6226.94 | 6351.4788 |
2018 | PAUL | ROSA | 3293.00 | 3358.8600 |
2020 | PAUL | ROSA | 1208.35 | 1232.5170 |
2020 | AIDEN | ROSENBLATT | 424.77 | 433.2654 |
2018 | SARAH | ROSENBLUM | 1584.00 | 1615.6800 |
2020 | EVAN | ROSS | 5000.04 | 5100.0408 |
2018 | JUAN | ROSS-PERKINS | 946.00 | 964.9200 |
2020 | JUAN | ROSS-PERKINS | 628.58 | 641.1516 |
2020 | ANNA | ROSSI | 1500.00 | 1530.0000 |
2020 | ANNA | ROSSI | 77.22 | 78.7644 |
2018 | SETH | ROTHBERG | 53439.00 | 54507.7800 |
2020 | SETH | ROTHBERG | 58342.49 | 59509.3398 |
2018 | ELIZABETH | ROWELL | 455.00 | 464.1000 |
2020 | ELIZABETH | ROWELL | 112.71 | 114.9642 |
2018 | DONNA | ROY | 71350.00 | 72777.0000 |
2018 | MICHAEL | ROY | 79765.00 | 81360.3000 |
2020 | MICHAEL | ROY | 87299.34 | 89045.3268 |
2018 | SUSAN | ROZNOY | 110.00 | 112.2000 |
2020 | SUSAN | ROZNOY | 90.09 | 91.8918 |
2020 | SOLOMON | RUESCHEMEYER-BAILEY | 180.18 | 183.7836 |
2018 | JASON | RUSHFORD | 74785.00 | 76280.7000 |
2020 | JASON | RUSHFORD | 80673.91 | 82287.3882 |
2018 | AMY | RUSIECKI | 95381.00 | 97288.6200 |
2020 | AMY | RUSIECKI | 105054.22 | 107155.3044 |
2020 | GEORGE | RYAN | 5000.04 | 5100.0408 |
2018 | JANET | RYAN | 58929.00 | 60107.5800 |
2020 | JANET | RYAN | 63499.83 | 64769.8266 |
2018 | RONALD | RYCZEK | 95114.00 | 97016.2800 |
2020 | RONALD | RYCZEK | 91654.67 | 93487.7634 |
2020 | JAYMES | SALTIS | 54870.81 | 55968.2262 |
2020 | BARBARA | SALTZ | 1500.00 | 1530.0000 |
2020 | HENRY | SAMMIS | 196.27 | 200.1954 |
2018 | MANUEL | SANTIAGO | 129.00 | 131.5800 |
2020 | MANUEL | SANTIAGO | 291.73 | 297.5646 |
2018 | MARY | SANTIAGO | 77.00 | 78.5400 |
2020 | MIGUEL | SANTIAGO | 46083.44 | 47005.1088 |
2018 | THOMAS | SARNA | 47071.00 | 48012.4200 |
2020 | THOMAS | SARNA | 53869.70 | 54947.0940 |
2020 | JOHN | SARNACKI | 51556.16 | 52587.2832 |
2020 | ANITA | SARRO | 225.23 | 229.7346 |
2018 | JUSTIN | SATKOWSKI | 74704.00 | 76198.0800 |
2020 | JUSTIN | SATKOWSKI | 87633.08 | 89385.7416 |
2020 | RYAN | SAUNDERS | 1319.58 | 1345.9716 |
2018 | MICHAEL | SAWICKI | 59003.00 | 60183.0600 |
2020 | MICHAEL | SAWICKI | 76966.31 | 78505.6362 |
2020 | AMANDA | SAYEGH | 2811.80 | 2868.0360 |
2020 | ALANNAH | SCARDINO | 1470.69 | 1500.1038 |
2020 | APRIL | SCHILLING | 3152.66 | 3215.7132 |
2020 | JENNA | SCHILLING | 3523.94 | 3594.4188 |
2018 | SOPHIE | SCHILLING | 2498.00 | 2547.9600 |
2020 | SOPHIE | SCHILLING | 2879.62 | 2937.2124 |
2020 | CATHY | SCHOEN | 5000.04 | 5100.0408 |
2018 | MADELINE | SCHORSCH | 66.00 | 67.3200 |
2020 | STEPHEN | SCHREIBER | 5000.04 | 5100.0408 |
2020 | NANCY | SCHROEDER | 9605.95 | 9798.0690 |
2020 | TRACEY | SCHRYBA | 12409.98 | 12658.1796 |
2018 | MARCIE | SCLOVE | 268.00 | 273.3600 |
2018 | LUKE | SEDOR PROTTI | 2147.00 | 2189.9400 |
2018 | PHILLIP | SENA | 1076.00 | 1097.5200 |
2018 | ERIN | SERAFIN | 1247.00 | 1271.9400 |
2020 | SUDHA | SETTY | 90.09 | 91.8918 |
2020 | MOHAN | SETTY-CHARITY | 90.09 | 91.8918 |
2020 | BRANDON | SEVIGNE | 4430.90 | 4519.5180 |
2020 | AMANDA | SHALLCROSS | 90.09 | 91.8918 |
2020 | EMILY | SHALLCROSS | 90.09 | 91.8918 |
2018 | JOHN | SHANNON | 39642.00 | 40434.8400 |
2020 | JOHN | SHANNON | 57145.28 | 58288.1856 |
2020 | MARY | SHARMA | 180.18 | 183.7836 |
2018 | MONIKA | SHARMA | 3358.00 | 3425.1600 |
2018 | SHARON | SHARRY | 100940.00 | 102958.8000 |
2020 | SHARON | SHARRY | 111600.51 | 113832.5202 |
2018 | MARY | SHAUGHAN | 194.00 | 197.8800 |
2020 | MARY | SHAUGHAN | 90.09 | 91.8918 |
2020 | MARY ELLEN | SHAUGHAN | 1500.00 | 1530.0000 |
2018 | JEFFREY | SHEA | 2243.00 | 2287.8600 |
2018 | CHRISTINA | SHEN | 71060.00 | 72481.2000 |
2020 | CHRISTINA | SHEN | 80363.57 | 81970.8414 |
2018 | ANNICK | SHERIDAN | 3639.00 | 3711.7800 |
2020 | JACQUELINE | SHERIDAN | 96.53 | 98.4606 |
2018 | PAUL | SHERRY | 2621.00 | 2673.4200 |
2020 | BRADLEY | SHERWOOD | 714.29 | 728.5758 |
2018 | CHRISTINE | SHERWOOD | 8008.00 | 8168.1600 |
2020 | CHRISTINE | SHERWOOD | 6155.03 | 6278.1306 |
2018 | NANCEE | SHIFFLETT | 3983.00 | 4062.6600 |
2018 | DEVIN | SHULAR | 55.00 | 56.1000 |
2018 | ELWOOD | SHULAR | 35325.00 | 36031.5000 |
2020 | ELWOOD | SHULAR | 45422.98 | 46331.4396 |
2020 | STUART | SHULMAN | 365.82 | 373.1364 |
2018 | LAUREN | SIMPSON | 521.00 | 531.4200 |
2018 | JAYANT | SINGH | 83712.00 | 85386.2400 |
2020 | JAYANT | SINGH | 93815.68 | 95691.9936 |
2018 | CHRISTOPHER | SKEELS | 39961.00 | 40760.2200 |
2020 | CHRISTOPHER | SKEELS | 47461.45 | 48410.6790 |
2018 | JASON | SKEELS | 91991.00 | 93830.8200 |
2020 | JASON | SKEELS | 99653.93 | 101647.0086 |
2020 | BENJAMIN | SKELTON | 1644.17 | 1677.0534 |
2020 | KAREN | SKOLFIELD | 186.62 | 190.3524 |
2018 | DAVID | SKRIBISKI | 50830.00 | 51846.6000 |
2020 | DAVID | SKRIBISKI | 54591.76 | 55683.5952 |
2018 | LISA | SLOCUM | 43308.00 | 44174.1600 |
2020 | LISA | SLOCUM | 16440.83 | 16769.6466 |
2020 | ELI | SLOVIN | 1051.40 | 1072.4280 |
2018 | CALVIN | SMITH | 1719.00 | 1753.3800 |
2020 | CALVIN | SMITH | 977.23 | 996.7746 |
2020 | CHELSEA | SMITH | 1288.42 | 1314.1884 |
2018 | EDMUND | SMITH | 69765.00 | 71160.3000 |
2020 | EDMUND | SMITH | 77940.65 | 79499.4630 |
2018 | JAMES | SMITH | 10468.00 | 10677.3600 |
2020 | JAMES | SMITH | 4614.49 | 4706.7798 |
2020 | KATHLEEN | SMITH | 90.09 | 91.8918 |
2020 | RENATA | SMITH | 180.18 | 183.7836 |
2018 | ALAN | SNOW | 83512.00 | 85182.2400 |
2020 | ALAN | SNOW | 87216.27 | 88960.5954 |
2018 | JAMES | SNOWDEN | 87645.00 | 89397.9000 |
2018 | JOHN | SOBIESKI | 3213.00 | 3277.2600 |
2020 | JOHN | SOBIESKI | 6899.20 | 7037.1840 |
2018 | CONNOR | SORMANTI | 862.00 | 879.2400 |
2020 | CONNOR | SORMANTI | 953.42 | 972.4884 |
2020 | MICHAEL | SOSA | 884.75 | 902.4450 |
2018 | SCOTT | SOVERINO | 86744.00 | 88478.8800 |
2020 | SCOTT | SOVERINO | 89972.32 | 91771.7664 |
2018 | DONALD | SPEARANCE | 102.00 | 104.0400 |
2018 | PATRICK | SPEDDING | 52481.00 | 53530.6200 |
2018 | MARJORIE | SPIEGEL | 59042.00 | 60222.8400 |
2020 | MARJORIE | SPIEGEL | 17270.20 | 17615.6040 |
2020 | LUCIA | SPIRO | 96.53 | 98.4606 |
2020 | KERRY | SPITZER | 1500.00 | 1530.0000 |
2018 | MATTHEW | SPOSITO | 83940.00 | 85618.8000 |
2020 | MATTHEW | SPOSITO | 84714.15 | 86408.4330 |
2020 | AMY | SPRINGER | 221.96 | 226.3992 |
2018 | MICHAEL | ST CYR | 26.00 | 26.5200 |
2018 | JOSEPH | STAFFORD | 44697.00 | 45590.9400 |
2020 | JOSEPH | STAFFORD | 45347.43 | 46254.3786 |
2018 | ADRIAN | STAIR | 206.00 | 210.1200 |
2020 | ADRIAN | STAIR | 90.09 | 91.8918 |
2020 | ANNA | STANFORTH | 180.18 | 183.7836 |
2020 | CILO | STEARNS | 90.09 | 91.8918 |
2018 | ALLISON | STEELE | 242.00 | 246.8400 |
2020 | DIANA | STEIN | 99.74 | 101.7348 |
2018 | ANDREW | STEINBERG | 1500.00 | 1530.0000 |
2020 | ANDREW | STEINBERG | 5000.04 | 5100.0408 |
2018 | VALERIE | STEINBERG | 4382.00 | 4469.6400 |
2020 | VALERIE | STEINBERG | 3670.52 | 3743.9304 |
2018 | JOSHUA | STEININGER | 69569.00 | 70960.3800 |
2020 | JOSHUA | STEININGER | 78055.25 | 79616.3550 |
2018 | JULIE | STEPANEK | 6225.00 | 6349.5000 |
2020 | JULIE | STEPANEK | 1687.72 | 1721.4744 |
2018 | BEVERLY | STEVENS | 281.00 | 286.6200 |
2020 | BEVERLY | STEVENS | 276.71 | 282.2442 |
2018 | JOEL | STEVENS | 281.00 | 286.6200 |
2020 | JOEL | STEVENS | 276.71 | 282.2442 |
2018 | SHIRLEY | STEVENS | 162.00 | 165.2400 |
2020 | SHIRLEY | STEVENS | 1500.00 | 1530.0000 |
2018 | CHARLES | STEVENSON | 55.00 | 56.1000 |
2020 | ZELDA | STEWART | 1043.90 | 1064.7780 |
2020 | MYRIAM | STIVEN | 1962.00 | 2001.2400 |
2018 | CORRINA | STOKES | 8309.00 | 8475.1800 |
2018 | LACE | STOKES | 42223.00 | 43067.4600 |
2020 | LACE | STOKES | 46349.97 | 47276.9694 |
2018 | SHAUNA | STRATTONMEIER | 14798.00 | 15093.9600 |
2018 | MARY | STREETER | 143.00 | 145.8600 |
2020 | MARY | STREETER | 109.40 | 111.5880 |
2018 | LINDSAY | STROLE | 64039.00 | 65319.7800 |
2018 | LINDSAY | STROMGREN | 125258.00 | 127763.1600 |
2020 | LINDSAY | STROMGREN | 133711.45 | 136385.6790 |
2020 | SARAH | STROUD | 9898.14 | 10096.1028 |
2020 | ANTRIESE | SUAREZ | 162.91 | 166.1682 |
2018 | AMBER | SULLIVAN | 52346.00 | 53392.9200 |
2020 | DELANEY | SULLIVAN | 687.17 | 700.9134 |
2020 | DELANEY | SULLIVAN | 90.09 | 91.8918 |
2018 | JALEN | SULLIVAN | 1693.00 | 1726.8600 |
2020 | JALEN | SULLIVAN | 2174.72 | 2218.2144 |
2018 | BRIANNA | SUNRYD | 66109.00 | 67431.1800 |
2020 | BRIANNA | SUNRYD | 73282.01 | 74747.6502 |
2020 | SARAH | SWARTZ | 5000.04 | 5100.0408 |
2020 | HANNAH | SWEET | 39155.65 | 39938.7630 |
2020 | HAROLD | SWIFT | 4919.84 | 5018.2368 |
2018 | TINA | SWIFT | 143.00 | 145.8600 |
2020 | CELESTE | SZE | 1500.00 | 1530.0000 |
2018 | MICHAEL | SZEWCZYNSKI | 86835.00 | 88571.7000 |
2020 | MICHAEL | SZEWCZYNSKI | 94391.18 | 96279.0036 |
2018 | MICHAEL | SZWED | 61098.00 | 62319.9600 |
2020 | MICHAEL | SZWED | 10120.59 | 10323.0018 |
2018 | J | TAN | 195.00 | 198.9000 |
2020 | J | TAN | 289.58 | 295.3716 |
2020 | MARTHA | TAUNTON | 180.18 | 183.7836 |
2020 | AMBER | TAYLOR | 63351.75 | 64618.7850 |
2018 | STEVE | TELEGA | 70598.00 | 72009.9600 |
2020 | STEVE | TELEGA | 75281.08 | 76786.7016 |
2018 | JULIAN | TEMMERMAN | 412.00 | 420.2400 |
2018 | ADRIENNE | TERRIZZI | 193.00 | 196.8600 |
2020 | ADRIENNE | TERRIZZI | 144.73 | 147.6246 |
2018 | KENTON | THARP | 157.00 | 160.1400 |
2018 | PAUL | THEILMAN | 98508.00 | 100478.1600 |
2020 | PAUL | THEILMAN | 110398.71 | 112606.6842 |
2018 | HELEN | THELEN | 140.00 | 142.8000 |
2018 | MAGGIE | THIBAULT | 4545.00 | 4635.9000 |
2020 | MAGGIE | THIBAULT | 5969.27 | 6088.6554 |
2018 | REGAN | THIBAULT | 3477.00 | 3546.5400 |
2020 | REGAN | THIBAULT | 3438.02 | 3506.7804 |
2018 | ALICIA | THIBEAULT | 1224.00 | 1248.4800 |
2018 | NICHOLAS | THOMANN | 1518.00 | 1548.3600 |
2018 | LIAM | THOMAS | 213.00 | 217.2600 |
2018 | JON | THOMPSON | 71750.00 | 73185.0000 |
2020 | JON | THOMPSON | 79942.43 | 81541.2786 |
2020 | LYNNE | THOMPSON | 90.09 | 91.8918 |
2020 | MARK | THOMPSON | 7169.22 | 7312.6044 |
2018 | ROBIN | THOMPSON | 198.00 | 201.9600 |
2020 | ROBIN | THOMPSON | 109.40 | 111.5880 |
2018 | THEO | THOMPSON | 704.00 | 718.0800 |
2018 | WILLIAM | THOMPSON | 165.00 | 168.3000 |
2020 | WILLIAM | THOMPSON | 64.35 | 65.6370 |
2020 | NIELS | THOMSEN | 23674.88 | 24148.3776 |
2020 | KIRSTEN | THOMSON | 180.18 | 183.7836 |
2018 | SCOTT | THURSTON | 85410.00 | 87118.2000 |
2020 | SCOTT | THURSTON | 87408.42 | 89156.5884 |
2020 | PERSIS | TICKNOR-SWANSON | 40.98 | 41.7996 |
2018 | JANICE | TIDLUND | 57631.00 | 58783.6200 |
2020 | JANICE | TIDLUND | 60350.17 | 61557.1734 |
2020 | PIERRE | TILUS | 391.04 | 398.8608 |
2018 | GABRIEL | TING | 126526.00 | 129056.5200 |
2020 | GABRIEL | TING | 143698.34 | 146572.3068 |
2018 | BRANDON | TOPONCE | 64945.00 | 66243.9000 |
2020 | ALEJANDRO | TORO-RODRIGUEZ | 38605.44 | 39377.5488 |
2018 | AMINA | TORRES | 4021.00 | 4101.4200 |
2020 | RAYMOND | TORRES | 36010.24 | 36730.4448 |
2018 | SUSAN | TRACY | 77.00 | 78.5400 |
2018 | PETER | TREYZ | 1735.00 | 1769.7000 |
2018 | VICTORIA | TRINGALE | 898.00 | 915.9600 |
2018 | MATTHEW | TRINGALI | 872.00 | 889.4400 |
2020 | PETER | TRIPP | 189.83 | 193.6266 |
2018 | DAVID | TROMPKE | 2433.00 | 2481.6600 |
2018 | DYLAN | TUNNELL | 68184.00 | 69547.6800 |
2020 | DYLAN | TUNNELL | 81296.24 | 82922.1648 |
2018 | LORI | TURATI | 58980.00 | 60159.6000 |
2020 | LORI | TURATI | 7434.62 | 7583.3124 |
2018 | JACQUELINE | TUTHILL | 132.00 | 134.6400 |
2020 | JACQUELINE | TUTHILL | 64.35 | 65.6370 |
2018 | SUSAN | TYLER | 314.00 | 320.2800 |
2020 | SUSAN | TYLER | 90.09 | 91.8918 |
2020 | JOHN | URSCHEL | 90.09 | 91.8918 |
2018 | RYAN | VAIL | 1437.00 | 1465.7400 |
2020 | SEAN | VALENTINE | 102.96 | 105.0192 |
2018 | THOMAS | VALLE | 83596.00 | 85267.9200 |
2020 | THOMAS | VALLE | 93042.86 | 94903.7172 |
2020 | KAYLAN | VALOVCIN | 87175.36 | 88918.8672 |
2018 | SARA | VAN STEENBURGH | 242.00 | 246.8400 |
2020 | SARA | VAN STEENBURGH | 92.82 | 94.6764 |
2018 | JOHN | VANASSE | 1545.00 | 1575.9000 |
2020 | DENNIS | VANDAL | 1500.00 | 1530.0000 |
2018 | JO-ANNE | VANIN | 187.00 | 190.7400 |
2020 | JO-ANNE | VANIN | 436.03 | 444.7506 |
2018 | NATHANIEL | VANNOY | 52444.00 | 53492.8800 |
2020 | NATHANIEL | VANNOY | 58234.08 | 59398.7616 |
2018 | FRANCES | VANTREESE | 127.00 | 129.5400 |
2020 | FRANCES | VANTREESE | 90.09 | 91.8918 |
2018 | KAYLAN | VAZQUEZ | 73731.00 | 75205.6200 |
2018 | MARK | VECCHIARELLI | 61220.00 | 62444.4000 |
2020 | ANDREW | VECCHIO | 34861.35 | 35558.5770 |
2020 | ANDREW | VECCHIO | 505.40 | 515.5080 |
2018 | LANDON | VENEY | 85.00 | 86.7000 |
2020 | LANDON | VENEY | 258.94 | 264.1188 |
2018 | CATHERINE | VERTS | 47748.00 | 48702.9600 |
2020 | CATHERINE | VERTS | 46485.22 | 47414.9244 |
2020 | STEPHANIE | VIGNONE | 7769.52 | 7924.9104 |
2020 | JOSHUA | VILLANUEVA | 68.60 | 69.9720 |
2018 | MICHAEL | VISNIEWSKI | 6055.00 | 6176.1000 |
2020 | MICHAEL | VISNIEWSKI | 4422.51 | 4510.9602 |
2018 | HELEN | VIVIAN | 99.00 | 100.9800 |
2020 | KAYLEIGH | VOCCA | 2620.99 | 2673.4098 |
2018 | ABBE | VREDENBURG | 253.00 | 258.0600 |
2020 | ABBE | VREDENBURG | 285.87 | 291.5874 |
2020 | KATELYN | WALAS | 495.66 | 505.5732 |
2020 | NICHOLAS | WALAS | 57638.15 | 58790.9130 |
2018 | JAMES | WALD | 1500.00 | 1530.0000 |
2018 | MICHAEL | WARNER | 74341.00 | 75827.8200 |
2020 | MICHAEL | WARNER | 81934.60 | 83573.2920 |
2018 | CASSIE | WARREN | 2820.00 | 2876.4000 |
2018 | DAVID | WASKIEWICZ | 76976.00 | 78515.5200 |
2020 | DAVID | WASKIEWICZ | 80919.08 | 82537.4616 |
2018 | THOMAS | WATERMAN | 53924.00 | 55002.4800 |
2020 | THOMAS | WATERMAN | 57528.05 | 58678.6110 |
2020 | STEPHEN | WATSON | 60.08 | 61.2816 |
2020 | GABRIELA | WEAVER | 215.57 | 219.8814 |
2018 | RODNEY | WEBER | 17905.00 | 18263.1000 |
2020 | RODNEY | WEBER | 10933.22 | 11151.8844 |
2020 | RAFAEL | WEIDENFELD | 80.44 | 82.0488 |
2018 | MARY | WEIDENSAUL | 4364.00 | 4451.2800 |
2020 | MARY | WEIDENSAUL | 4738.28 | 4833.0456 |
2020 | MAYA | WEILERSTEIN | 6046.45 | 6167.3790 |
2018 | ROBERT | WEINER | 88.00 | 89.7600 |
2020 | ROBERT | WEINER | 38.61 | 39.3822 |
2018 | JEANNE | WEINRAUB | 88.00 | 89.7600 |
2018 | LYNNE | WEINTRAUB | 34412.00 | 35100.2400 |
2020 | LYNNE | WEINTRAUB | 37800.88 | 38556.8976 |
2020 | DANO | WEISBORD | 102.96 | 105.0192 |
2018 | DANIEL | WELCH | 97030.00 | 98970.6000 |
2020 | DANIEL | WELCH | 103487.72 | 105557.4744 |
2018 | LAURA | WENK | 132.00 | 134.6400 |
2018 | LINDA | WENTWORTH | 62083.00 | 63324.6600 |
2020 | LINDA | WENTWORTH | 71287.24 | 72712.9848 |
2018 | CHRISTINE | WESTERHOLM | 55.00 | 56.1000 |
2018 | CHARLOTTE | WESTHEAD | 294.00 | 299.8800 |
2020 | CHARLOTTE | WESTHEAD | 99.74 | 101.7348 |
2018 | WILLIE | WHEELER | 972.00 | 991.4400 |
2020 | WILLIE | WHEELER | 574.48 | 585.9696 |
2018 | KATHERINE | WHITCOMB | 10555.00 | 10766.1000 |
2020 | KATHERINE | WHITCOMB | 12595.95 | 12847.8690 |
2018 | CHRISTINE | WHITE | 57486.00 | 58635.7200 |
2020 | CHRISTINE | WHITE | 63270.26 | 64535.6652 |
2018 | LISA | WHITE | 13463.00 | 13732.2600 |
2018 | JACKSON | WHITLOCK | 553.00 | 564.0600 |
2020 | PHYLLIS | WHITNEY | 1500.00 | 1530.0000 |
2018 | MARYANNA | WHITTEMORE | 187.00 | 190.7400 |
2020 | MARYANNA | WHITTEMORE | 185.64 | 189.3528 |
2018 | CLIFFORD | WILKINSON | 6300.00 | 6426.0000 |
2020 | CLIFFORD | WILKINSON | 5085.66 | 5187.3732 |
2020 | CRYSTAL | WILLARD | 46705.31 | 47639.4162 |
2020 | CAROLINE | WILLIAMS | 89.20 | 90.9840 |
2018 | DAVID | WILLIAMS | 179.00 | 182.5800 |
2018 | JANET | WILLIAMS | 204.00 | 208.0800 |
2020 | ROBERT | WILLIAMS | 5928.89 | 6047.4678 |
2018 | ROY | WILLIAMS | 168.00 | 171.3600 |
2018 | DAKOTA | WILLIS | 41922.00 | 42760.4400 |
2020 | DAKOTA | WILLIS | 51694.06 | 52727.9412 |
2018 | RODNEY | WILLIS | 78591.00 | 80162.8200 |
2020 | RODNEY | WILLIS | 82957.78 | 84616.9356 |
2018 | ELIZABETH | WILLSON | 34407.00 | 35095.1400 |
2020 | ELIZABETH | WILLSON | 77487.88 | 79037.6376 |
2018 | NANCY | WILSON | 784.00 | 799.6800 |
2020 | NANCY | WILSON | 860.58 | 877.7916 |
2020 | HENDER | WINER | 189.83 | 193.6266 |
2018 | DAWN | WINKLER | 6284.00 | 6409.6800 |
2020 | DAWN | WINKLER | 7314.80 | 7461.0960 |
2020 | SHEILA | WINTER | 93.31 | 95.1762 |
2018 | DEBRA | WIRTH | 413.00 | 421.2600 |
2020 | DEBRA | WIRTH | 193.05 | 196.9110 |
2018 | GREGORY | WISE | 113131.00 | 115393.6200 |
2020 | GREGORY | WISE | 121546.06 | 123976.9812 |
2020 | MORGAN | WITHERELL | 199.30 | 203.2860 |
2018 | JEFFREY | WOJCIK | 3084.00 | 3145.6800 |
2018 | ALBERT | WOODHULL | 261.00 | 266.2200 |
2020 | ALBERT | WOODHULL | 109.28 | 111.4656 |
2020 | DONNA | WOODS | 79879.17 | 81476.7534 |
2020 | KRISTIN | WOODS | 103.11 | 105.1722 |
2020 | JOSEPH | WORTHLEY | 51081.00 | 52102.6200 |
2018 | WILLIAM | WORTHLEY | 80627.00 | 82239.5400 |
2020 | WILLIAM | WORTHLEY | 85582.77 | 87294.4254 |
2018 | MARK | WOYNAR | 76363.00 | 77890.2600 |
2020 | MARK | WOYNAR | 78980.26 | 80559.8652 |
2020 | CAMERON | WRIGHT | 2031.47 | 2072.0994 |
2020 | ELISE | WRIGHT | 1336.84 | 1363.5768 |
2020 | NATHANIEL | WRIGHT | 3831.60 | 3908.2320 |
2018 | THERESA | WRIGHT | 154.00 | 157.0800 |
2020 | THERESA | WRIGHT | 102.96 | 105.0192 |
2020 | GORDON | WYSE | 99.74 | 101.7348 |
2018 | ZIYANG | XU | 1062.00 | 1083.2400 |
2020 | TERRENCE | YATES | 4316.05 | 4402.3710 |
2018 | ERIC | YELLE | 8132.00 | 8294.6400 |
2020 | GERALD | YELLE | 193.06 | 196.9212 |
2018 | MATTHEW | YODER | 54473.00 | 55562.4600 |
2020 | MATTHEW | YODER | 58227.18 | 59391.7236 |
2020 | NOR | YOUNG | 1989.05 | 2028.8310 |
2018 | NORA | YOUNG | 1964.00 | 2003.2800 |
2018 | RONALD | YOUNG | 131647.00 | 134279.9400 |
2020 | RONALD | YOUNG | 138974.80 | 141754.2960 |
2020 | SASHA | YOUNG | 5439.10 | 5547.8820 |
2018 | RICHARD | YOURGA | 971.00 | 990.4200 |
2018 | TRACY | ZAFIAN | 338.00 | 344.7600 |
2020 | TRACY | ZAFIAN | 355.17 | 362.2734 |
2018 | ROBERT | ZAKAITIS | 58784.00 | 59959.6800 |
2020 | ROBERT | ZAKAITIS | 61629.73 | 62862.3246 |
2018 | CORY | ZENG | 90.00 | 91.8000 |
2020 | CORY | ZENG | 7676.16 | 7829.6832 |
2020 | FAYE | ZHANG | 77.22 | 78.7644 |
2018 | HANBING | ZHANG | 2453.00 | 2502.0600 |
2018 | CHUNYU | ZHOU | 26503.00 | 27033.0600 |
2020 | CHUNYU | ZHOU | 43068.42 | 43929.7884 |
2018 | JANE | ZIFF | 143.00 | 145.8600 |
2018 | ALEXANDRIA | ZIOMEK | 674.00 | 687.4800 |
2018 | MATTHEW | ZIOMEK | 132249.00 | 134893.9800 |
2018 | MATTHEW | ZIOMEK | 103612.00 | 105684.2400 |
2020 | MATTHEW | ZIOMEK | 146471.42 | 149400.8484 |
2020 | MATTHEW | ZIOMEK | 107948.39 | 110107.3578 |
2018 | KAY | ZLOGAR | 26488.00 | 27017.7600 |
2020 | KAY | ZLOGAR | 27620.68 | 28173.0936 |
2020 | GEOFFREY | ZUCKER | 140.02 | 142.8204 |
You can always a select()
step at the end to make it easier to see the changes (old value vs. the new one).
You can also combine mutate()
with other functions to do more advanced analysis. For example, here’s how we might calculate a 2% increase for each department’s 2020 personnel budgets:
salaries %>%
filter(year == 2020) %>%
group_by(department) %>%
summarize(total_wages = sum(gross_wages)) %>%
mutate(increased_total_wages=total_wages*1.02)
department | total_wages | increased_total_wages |
---|---|---|
Accounting | 522074.13 | 532515.61 |
Amherst Recreation | 677209.44 | 690753.63 |
Animal Control | 64764.61 | 66059.90 |
Assessor | 179961.45 | 183560.68 |
Cherry Hill Golf Course | 15547.71 | 15858.66 |
Collectors | 406429.27 | 414557.86 |
Conservation | 388677.25 | 396450.79 |
Dispatch | 840254.71 | 857059.80 |
Facilities/Maintenance | 420992.75 | 429412.60 |
Fire | 4603893.90 | 4695971.78 |
Information Technology | 545780.28 | 556695.89 |
Inspections Services | 813326.17 | 829592.69 |
Jones Library | 1787241.92 | 1822986.76 |
Parking Enforcement | 96938.12 | 98876.88 |
Planning | 427755.51 | 436310.62 |
Police | 5085051.48 | 5186752.51 |
Public Health | 175109.71 | 178611.90 |
Public Works | 4338482.07 | 4425251.71 |
Senior Center | 329477.54 | 336067.09 |
Town Clerk’s | 252432.05 | 257480.69 |
Town Council | 142493.92 | 145343.80 |
Town Manager’s Office | 508185.71 | 518349.42 |
Data frames can come in two different formats: long and wide.
Given the same dataset, long format means you have fewer variables but more rows. Wide format means you have more variables but fewer rows.
This is important because some operations in R are more easily completed using wide data, and others using long data. This will also be the case with other software, as we’ll see when we export data from R to an interactive data visualization tool later in the book. Thus, we sometimes need to change the format.
Consider our current dataset:
salaries %>%
head(10)
year | last_name | first_name | gross_wages | department |
---|---|---|---|---|
2020 | AARONSON | JEREMY | 252.71 | Fire |
2018 | ABDEL-MAKSOUD | ALI | 9878.00 | Amherst Recreation |
2020 | ABDEL-MAKSOUD | AMMAR | 1433.96 | Amherst Recreation |
2018 | ABELLI | NICOLE | 45931.00 | Amherst Recreation |
2020 | ABELLI | NICOLE | 57203.87 | Amherst Recreation |
2020 | ABRAMSON | ANDREW | 81.96 | Town Clerk’s |
2018 | ADAIR | DIANA | 102.00 | Town Clerk’s |
2018 | ADELSBEGER | EMILY | 359.00 | Amherst Recreation |
2020 | AHO | PATRICIA | 180.18 | Town Clerk’s |
2018 | AHRENS | ELIZA | 14023.00 | Jones Library |
Our dataset is in long format because we may have two observations (rows) for the same person, with each observation representing that person in a different point in time (different year
).
If we want to convert that dataset from long to wide format, we would use the pivot_wider()
function.
This function takes three key arguments: (1) id_cols
, which covers the variable(s) that identify what makes an observation unique in our dataset; (2) names_from
, which covers the variable(s) containing the information used to name our new variables (i.e., give column names); and (3) values_from
, which covers the variable(s) containing the information used to add values to each entry with the corresponding column.
To help illustrate this, let’s just look at a small segment of our data:
salaries %>%
filter(first_name=="PAUL" & last_name=="BOCKELMAN")
year | last_name | first_name | gross_wages | department |
---|---|---|---|---|
2018 | BOCKELMAN | PAUL | 171504.0 | Town Manager’s Office |
2020 | BOCKELMAN | PAUL | 193575.7 | Town Manager’s Office |
The id_cols
are the variables (columns) that stay the same for each observation we want to treat as a unique unit (single row). In this case, we want our unique entries to be identified through the combination of first_name
and last_name
.
What makes our dataset long (repeated rows for unique individuals) is the year
variable. The names_from
variable thus refers to the year
. This will then create two new columns (in addition to columns kept through id_cols
) based on the two year
values. The addition of new columns, such that we only have one row per individual, is what will make our new dataset wide.
Finally, the other variable that changes from row to row is the salary
, which corresponds to the salary on a given year. We thus specify that as our values_from
variable.
So, let’s put all of those arguments together as part of a pivot_wider()
call:
salaries %>%
filter(first_name=="PAUL" & last_name=="BOCKELMAN") %>%
pivot_wider(id_cols=c("last_name", "first_name"), names_from="year", values_from="gross_wages")
last_name | first_name | 2018 | 2020 |
---|---|---|---|
BOCKELMAN | PAUL | 171504 | 193575.7 |
I can apply that transformation to the entire dataset by dropping the filter()
step. However, some rows will have a value for the newly created variable, 2020
, and NA
(missing data) for 2018
(and vice versa). That’s because our original (long) dataset didn’t have data for some individuals at one of those two points in time.
If we want to convert a dataset from wide to long format, we would use the pivot_longer()
function.
This function also needs three key arguments: (1) cols
, which covers the variable(s) that can be grouped into a single variable; (2) names_to
, which covers the name you want to assign to the variable containing the previous column names; and (3) values_to
, which covers the name you want to assign to the variable containing the values under the previous columns.
To illustrate that, let’s create a salaries_wide
data frame using the earlier code, and then look up one of its employees once again.
salaries_wide <- salaries %>%
pivot_wider(id_cols=c("last_name", "first_name", "department"), names_from="year", values_from="gross_wages")
salaries_wide %>%
filter(first_name=="PAUL" & last_name=="BOCKELMAN")
last_name | first_name | department | 2020 | 2018 |
---|---|---|---|---|
BOCKELMAN | PAUL | Town Manager’s Office | 193575.7 | 171504 |
We had to add the department
to my id_cols
argument because we had at least one person who worked in multiple departments within the same year. In doing so, we run the risk of now having two entries for a single person and year combination. This might be fine, but we could also aggregate all of the salaries beforehand, ignoring the departmental affiliation, if we want the most accurate sum for those wages.
The cols
are the variables (columns) that contain the information we want to group under a single variable. In this case, that’s the 2018
and 2017
variables. (Note that those variable names are enclosed in backticks. That’s because R might think of them as numbers, and not variable names, without the backticks.)
We will assign them back to a column called year
, which is the label we can assign to names_to
.
Finally, we will name the variable containing the associated value for each variation of the year wages
.
Here’s how we would translate all of that into arguments for our pivot_longer()
function, once again looking at a single employee for the sake of simplicity.
salaries_wide %>%
filter(first_name=="PAUL" & last_name=="BOCKELMAN") %>%
pivot_longer(cols=c("2020", "2018"), names_to="year", values_to="gross_wages")
last_name | first_name | department | year | gross_wages |
---|---|---|---|---|
BOCKELMAN | PAUL | Town Manager’s Office | 2020 | 193575.7 |
BOCKELMAN | PAUL | Town Manager’s Office | 2018 | 171504.0 |
I can apply the transformation to the entire dataset by dropping the filter()
statement. This will give us more observations (rows) than we had with the original dataset. That’s because it added rows even when one of our columns had had an NA
value (which our original dataset didn’t have, hence the missing data now).
We could easily get rid of those NA
values if we wanted by appending the values_drop_na=TRUE
argument to the pivot_longer()
function.
While we don’t need to make our plots appealing during the exploratory phase, there are some aesthetics that can still help us interpret the data correctly. It is also useful to begin practicing these functions for when it is time to produce good-looking visualizations. I’ll first describe the functions and then show them in examples below.
Also, do note that ggplot()
likes data frames to be in long format.
You can provide different kinds of groupings based on a variable by entering that aesthetic as an argument within the aes()
function when creating the ggplot()
(alongside x
and y
aesthetics, for example).
There are different kinds of aesthetics you can use for this.
If you want to simply group values (e.g., treat multiple observations as being part of a single group), you can use the group
argument.
If you want to color each grouping in a different color (e.g., have each department be a different color), you can use the color
argument.
If you want to use different shapes as the signifier, use the shape
argument.
If you want the size (weight) of a geom to be based on a variable, you can use the size
argument.
For example, here’s how we might color a line graph based on the department being shown:
salaries %>%
filter(department %in% c("Fire", "Police", "Town Manager's Office")) %>%
group_by(year, department) %>%
summarize(total_wages=sum(gross_wages)) %>%
ggplot(aes(x=year, y=total_wages, color=department)) +
geom_point() +
geom_line()
The %in%
operator allows us to quickly list different “OR” Boolean conditions. Put another way, if the value in the department
variable appears in that vector of three department names, then it should be included in our dataset.
Sometimes, you’ll want to reorder categorical information to get it to show a certain way (e.g., longest bars on top, legend in alphabetical order). A good function to do that is the fct_reorder()
function, which should be applied at the time of aesthetic mapping.
This function takes two arguments: (1) the variable containing the values for the axis and (2) the variable containing the values you want to sort by.
For example, this is how I might re-order a column plot so that the first bar is the one with the highest total_wages
value and the last bar is the one with the lowest value:
salaries %>%
filter(year == 2020 & department %in% c("Fire", "Police", "Town Manager's Office")) %>%
group_by(department) %>%
summarize(total_wages=sum(gross_wages)) %>%
ggplot(aes(x=fct_reorder(department, desc(total_wages)), y=total_wages)) +
geom_col()
By default, ggplot()
will scale axes to the minimum and maximum values. The expand_limits()
function allows us to quickly expand the axes beyond those values by applying it as an additional layer.
This function only requires one argument: the axis you want to modify, and what the new limit should be (e.g., expand_limits(y=0)
).
If you want to specify a range, use c(lowest_value, highest_value)
. You can change the limits for two axes at once (e.g., y=0, x=c(10, 15))
).
Here’s how we might expand the Y axis in our previous bar chart to go up by an additional 1,000,000 units:
salaries %>%
filter(year == 2020 & department %in% c("Fire", "Police", "Town Manager's Office")) %>%
group_by(department) %>%
summarize(total_wages=sum(gross_wages)) %>%
ggplot(aes(x=fct_reorder(department, -total_wages), y=total_wages)) +
geom_col() +
expand_limits(y=6000000)
If you have continuous variables (e.g., numbers), you can add more tick marks to your chart by using scale_y_continuous()
(for the Y axis, and x
for the X axis) and apply the argument breaks=seq(from, to, by)
.
For example, if I want tick marks from 0 to 6,000,000, with a different tick every 1,000,000 units, I would could pair this with the seq()
function like this:
salaries %>%
filter(year == 2020 & department %in% c("Fire", "Police", "Town Manager's Office")) %>%
group_by(department) %>%
summarize(total_wages=sum(gross_wages)) %>%
ggplot(aes(x=fct_reorder(department, -total_wages), y=total_wages)) +
geom_col() +
expand_limits(y=6000000) +
scale_y_continuous(breaks=seq(0, 6000000, 1000000))
I could also apply the limits
argument to scale_y_continuous
, which does the same thing as expand_limits()
. Put another way, I could delete that previous line of code by adding this single argument.
By default, ggplot()
puts the variable name as the label for each axis. If you want something that’s easier to read, you can specify it using the labs()
function and adding the arguments x
and y
.
For example, here is how we would label the X axis as Department
and the Y axis as Total Wages (in $)
.
salaries %>%
filter(year == 2020 & department %in% c("Fire", "Police", "Town Manager's Office")) %>%
group_by(department) %>%
summarize(total_wages=sum(gross_wages)) %>%
ggplot(aes(x=fct_reorder(department, -total_wages), y=total_wages)) +
geom_col() +
scale_y_continuous(breaks=seq(0, 6000000, 1000000), limits=c(0, 6000000)) +
labs(x="Department", y="Total Wages (in $)")
We could also do that for our Y axis by appending the name
argument to the scale_y_continuous()
function.
You can create a grid of similar charts that vary based on some variable by using the facet_wrap()
function.
This function requires a single argument: the variable(s) used to set up the grid (i.e., what variable should differentiate each cell within the grid).
For example, here’s how I could create a separate column plot for each of the two years in our dataset:
salaries %>%
filter(department %in% c("Fire", "Police", "Town Manager's Office")) %>%
group_by(year, department) %>%
summarize(total_wages=sum(gross_wages)) %>%
ggplot(aes(x=fct_reorder(department, -total_wages), y=total_wages)) +
geom_col() +
scale_y_continuous(breaks=seq(0, 6000000, 1000000), limits=c(0, 6000000)) +
labs(x="Department", y="Total Wages (in $)") +
facet_wrap(~year)
Notice that facet_wrap()
uses a tilde (~
) before the variable. In R convention, the tilde stands for ‘by’. So we are saying, create subplots by (based on) the year
variable.
We can also add a number of theming options by applying the theme()
function to a new layer. That function accepts arguments to change the size of all text elements in the plot (text
), the size of specific textual elements (axis.text.x
), the position of a legend (legend.position
), the background color (panel.background
), and a litany of other visual settings.
For example, if I want to rotate the labels on my X axis by 45 degrees (to get rid of overlapping text), I could use the theme()
option to style my plot’s axis.text.x
attribute, like so:
salaries %>%
filter(department %in% c("Fire", "Police", "Town Manager's Office")) %>%
group_by(year, department) %>%
summarize(total_wages=sum(gross_wages)) %>%
ggplot(aes(x=fct_reorder(department, -total_wages), y=total_wages)) +
geom_col() +
scale_y_continuous(breaks=seq(0, 6000000, 1000000), limits=c(0, 6000000)) +
labs(x="Department", y="Total Wages (in $)") +
facet_wrap(~year) +
theme(axis.text.x=element_text(angle=45, hjust=1))
The hjust
argument keeps the labels from hugging the bottom of my X axis too tightly.
We are only scratching the surface of ggplot’s abilities, and we will cover them in greater detail later in the semester. If you are curious and wish to add even more aesthetics, check out the ggplot2 reference page.